19.若函數(shù)f(x)=logax(a>0,a≠1)在$[\frac{1}{2},16]$上的最大值為4,最小值為m,且函數(shù)$g(x)=(2+m)\sqrt{x}$ 在(0,+∞)上是增函數(shù),則a=2.

分析 根據(jù)對(duì)數(shù)函數(shù)的性質(zhì),對(duì)底數(shù)a進(jìn)行討論,在$[\frac{1}{2},16]$上的最大值為4,最小值為m,解出m的值,在根據(jù)$g(x)=(2+m)\sqrt{x}$ 在(0,+∞)上是增函數(shù),確定m的值.

解答 解:函數(shù)f(x)=logax(a>0,a≠1)在$[\frac{1}{2},16]$上的最大值為4,最小值為m.
當(dāng)0<a<1時(shí),則有:$\left\{\begin{array}{l}{m=lo{g}_{a}16}\\{4=lo{g}_{a}\frac{1}{2}}\end{array}\right.$,解得:a=${2}^{-\frac{1}{4}}$,m=-16.
當(dāng)a>1時(shí),則有:$\left\{\begin{array}{l}{4=lo{g}_{a}16}\\{m=lo{g}_{a}\frac{1}{2}}\end{array}\right.$,解得:a=2,m=-1
又∵$g(x)=(2+m)\sqrt{x}$ 在(0,+∞)上是增函數(shù),
∴2+m>0,∴m>-2.
所以滿(mǎn)足題意時(shí),a=2.
故答案為:2.

點(diǎn)評(píng) 本題考查了對(duì)數(shù)函數(shù)的性質(zhì)的運(yùn)用,當(dāng)?shù)讛?shù)大小無(wú)法確定時(shí),需要對(duì)其進(jìn)行討論.屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.拋物線x2=2py(p>0)的焦點(diǎn)為F,其準(zhǔn)線與雙曲線x2-y2=3相交于A,B兩點(diǎn),若△ABF為等邊三角形,則p=( 。
A.2B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知tan(α-π)=$\frac{3}{4}$,且α∈($\frac{π}{2}$,$\frac{3π}{2}$),則sin(α+$\frac{π}{2}$)=-$\frac{4}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知各項(xiàng)均為正數(shù)的等比數(shù)列{an},a1a2a3=5,a7a8a9=10,則log2(a4a5a6)=( 。
A.$\frac{1}{2}$+log25B.$\frac{1}{2}$+2log25C.$\frac{1}{2}$+log52D.1+log25.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.函數(shù)f(x)=$\frac{1}{3}$x3+$\frac{1}{2}$x2的導(dǎo)函數(shù)f′(x),那么數(shù)列{$\frac{1}{f′(n)}$},n∈N*的前n項(xiàng)和是$\frac{n}{n+1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知函數(shù)f(x)=x2-4-k|x-2|,x∈[0,4].
(1)若k=6,求f(x)的最大值;
(2)若f(x)的最大值是8,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.一個(gè)長(zhǎng)方體被一個(gè)平面截去一部分后所剩幾何體的三視圖如圖所示 (單位:cm),則該幾何體的體積為( 。
A.120 cm3B.80 cm3C.100 cm3D.60 cm3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$中,橢圓長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的$\sqrt{3}$倍,短軸的一個(gè)端點(diǎn)與兩個(gè)焦點(diǎn)構(gòu)成的三角形的面積為$\frac{{5\sqrt{2}}}{3}$.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)已知?jiǎng)又本y=k(x+1)與橢圓C相交于A,B兩點(diǎn),
①若線段AB的中點(diǎn)的橫坐標(biāo)為$-\frac{1}{2}$,求斜率k的值;
②已知點(diǎn)$M(-\frac{7}{3},0)$,求證:$\overrightarrow{MA}•\overrightarrow{MB}$為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.如果實(shí)數(shù)x,y滿(mǎn)足條件$\left\{\begin{array}{l}y≤1\\ 2x-y-1≤0\\ x+y-1≥0\end{array}\right.$,則x2+y2的最大值為( 。
A.$\sqrt{2}$B.$\frac{1}{2}$C.1D.2.

查看答案和解析>>

同步練習(xí)冊(cè)答案