分析 (1)分別令n=1,2,3,4可以求出S1,S2,S3,S4的值,
(2)從而可猜想{Sn}的一個通項公式,方法一(裂項求和);
方法二:(數(shù)學歸納法)按照數(shù)學歸納法的證題步驟:先證明n=1時命題成立,再假設當n=k時結(jié)論成立,去證明當n=k+1時,結(jié)論也成立,從而得出命題an=2n+n對任意的正整數(shù)n恒成立.
解答 解:(1∵${S_n}=\frac{1}{1×2}+\frac{1}{2×3}+\frac{1}{3×4}+…+\frac{1}{n(n+1)}$
∴S1=$\frac{1}{1×2}$=$\frac{1}{2}$,S2=$\frac{1}{1×2}$+$\frac{1}{2×3}$=$\frac{2}{3}$,S3=$\frac{1}{1×2}$+$\frac{1}{2×3}$+$\frac{1}{3×4}$=$\frac{3}{4}$,S4=$\frac{4}{5}$,
(2)由(1)可以猜想,Sn=$\frac{n}{n+1}$,
理由如下:方法一(裂項求和):
∵$\frac{1}{n(n+1)}$=$\frac{1}{n}$-$\frac{1}{n+1}$
∴${S_n}=\frac{1}{1×2}+\frac{1}{2×3}+\frac{1}{3×4}+…+\frac{1}{n(n+1)}$=1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+…+$\frac{1}{n}$-$\frac{1}{n+1}$=1-$\frac{1}{n+1}$=$\frac{n}{n+1}$,
方法二:(數(shù)學歸納法)
①當n=1時,顯然成立,
②假設n=k時成立,即Sk=$\frac{k}{k+1}$,
那么,當n=k+1時,Sk+1=$\frac{1}{1×2}$+$\frac{1}{2×3}$+$\frac{1}{3×4}$+…+$\frac{1}{k(k+1)}$+$\frac{1}{(k+1)(k+2)}$=$\frac{k}{k+1}$+$\frac{1}{(k+1)(k+2)}$=$\frac{k(k+2)+1}{(k+1)(k+2)}$=$\frac{(k+1)^{2}}{(k+1)(k+2)}$=$\frac{k+1}{k+1+1}$
所以當n=k+1時,猜想成立,
由①②可知,猜想成立.
點評 本題考查數(shù)學歸納法,考查推理證明的能力,假設n=k(k∈N*)時命題成立,去證明則當n=k+1時,用上歸納假設是關鍵,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | (3,+∞) | B. | [3,+∞) | C. | (2,+∞) | D. | [2,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 圓 | B. | 橢圓 | C. | 雙曲線 | D. | 拋物線 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{6}$ | B. | $\frac{1}{36}$ | C. | $\frac{1}{12}$ | D. | $\frac{1}{11}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 0.6 | B. | 0.7 | C. | 0.8 | D. | 0.9 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com