13.根據(jù)如圖所示的流程圖,若輸入值x∈[0,3],則輸出值y的取值范圍是[1,7].

分析 根據(jù)程序框圖知:算法的功能是求y=$\left\{\begin{array}{l}{-(x-1)^{2}}&{x<0}\\{2x+1}&{x≥0}\end{array}\right.$的值,求分段函數(shù)的值域可得答案.

解答 解:由程序框圖知:算法的功能是求y=$\left\{\begin{array}{l}{-(x-1)^{2}}&{x<0}\\{2x+1}&{x≥0}\end{array}\right.$的值,
當(dāng)x∈[0,3]時(shí),滿足條件x≥0,函數(shù)y=2x+1∈[1,7].
故答案為:[1,7].

點(diǎn)評(píng) 本題考查了選擇結(jié)構(gòu)的程序框圖,分段函數(shù)求值域的方法是先在不同的段上值域,再求并集,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若cos($\frac{π}{6}$-α)=$\frac{3}{5}$,則cos($\frac{5π}{6}$+α)的值是( 。
A.$\frac{3}{5}$B.-$\frac{3}{5}$C.$\frac{4}{5}$D.-$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知x與y滿足$\left\{{\begin{array}{l}{x+y≤2}\\{x≥0}\\{y≥0}\end{array}}\right.$,則y-x的最大值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.若命題“?x0∈R,x02-3ax0+9<0”為假命題,則實(shí)數(shù)a的取值范圍是[-2,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.(Ⅰ)化簡(jiǎn)$\frac{sin(2π-α)tan(α+π)tan(-α)}{cos(π-α)tan(3π-α)}$.
(Ⅱ)計(jì)算$cos\frac{25π}{6}+cos\frac{25π}{3}+tan({-\frac{25π}{4}})+sin\frac{5π}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,扇形AOB是某個(gè)旅游景點(diǎn)的平面示意圖,圓心角AOB的大小等于$\frac{π}{3}$,半徑OA=200m,點(diǎn)M在半徑OA上,點(diǎn)N在$\widehat{AB}$上,且MN∥OB,求觀光道路OM與MN長(zhǎng)度之和的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知實(shí)數(shù)a>0,b>0
(1)若a+b>2,求證:$\frac{1+b}{a},\frac{1+a}$中至少有一個(gè)小于2;
(2)若a-b=2,求證:a3+b>8;
(3)若a2-b2=2,求證:a(3a-2b)≥4$\sqrt{2}$+6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.在△ABC中,
(1)已知$\sqrt{2}$a=2bsinA,求B;
(2)已知a2+b2+$\sqrt{2}$ab=c2,求C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.在三角形ABC中AB=a,AC=b(b>0,a>0),P是三角形ABC的外心,數(shù)量積$\overrightarrow{AP}$$•\overrightarrow{BC}$等于( 。
A.$\frac{a+b}{2}$B.a+bC.$\frac{{a}^{2}-^{2}}{2}$D.$\frac{^{2}-{a}^{2}}{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案