14.已知等差數(shù)列{an}中,首項為a1(a1≠0),公差為d,前n項和為Sn,且滿足a1S5+15=0,則實數(shù)d的取值范圍是(-∞,-$\sqrt{3}$]∪[$\sqrt{3}$,+∞).

分析 由已知條件利用等差數(shù)列前n項和公式得$5{{a}_{1}}^{2}$+10a1d+15=0,從而d=-$\frac{3}{2{a}_{1}}$-$\frac{1}{2}$a1,由此利用均值定理能求出實數(shù)d的取值范圍.

解答 解:∵等差數(shù)列{an}中,首項為a1(a1≠0),公差為d,
前n項和為Sn,且滿足a1S5+15=0,
∴${a}_{1}(5{a}_{1}+\frac{5×4}{2}d)$+15=0,
∴$5{{a}_{1}}^{2}$+10a1d+15=0,
∴d=-$\frac{3}{2{a}_{1}}$-$\frac{1}{2}$a1,
當a1>0時,d=-$\frac{3}{2{a}_{1}}$-$\frac{1}{2}$a1≤-2$\sqrt{(-\frac{3}{2{a}_{1}})(-\frac{1}{2}{a}_{1})}$=-$\sqrt{3}$,
當a1<0時,d=-$\frac{3}{2{a}_{1}}$-$\frac{1}{2}$a1≥2$\sqrt{(-\frac{3}{2{a}_{1}})(-\frac{1}{2}{a}_{1})}$=$\sqrt{3}$,
∴實數(shù)d的取值范圍是(-∞,-$\sqrt{3}$]∪[$\sqrt{3}$,+∞).
故答案為:(-∞,-$\sqrt{3}$]∪[$\sqrt{3}$,+∞).

點評 本題考查實數(shù)的取值范圍的求法,是中檔題,解題時要認真審題,注意等差數(shù)列的性質(zhì)和均值定理的合理運用.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

4.計算下列函數(shù)的導數(shù):
(1)y=$\frac{lnx}{x}$+sinx
(2)y=x2+$\sqrt{x}$-ex•cosx.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知函數(shù)f(x)=$\sqrt{2}$sin(2x-$\frac{π}{6}$),當x∈[0,$\frac{π}{2}}$]時,f(x)的最大值、最小值分別為( 。
A.$\sqrt{2}$、-$\frac{{\sqrt{2}}}{2}$B.1、-$\frac{1}{2}$C.1、-$\frac{{\sqrt{2}}}{2}$D.$\sqrt{2}$、$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知復數(shù)z=$\frac{{-1+\sqrt{3}i}}{2}$(i為虛數(shù)單位),則$\overline{z}$3=( 。
A.1B.-1C.$\frac{{-1-\sqrt{3}i}}{2}$D.$\frac{{-1+\sqrt{3}i}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.在等差數(shù)列{an}中,a1=1,a4=7,則{an}的前4項和S4=16.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知($\root{4}{x}$+$\sqrt{{x}^{3}}$)n展開式中的倒數(shù)第三項的系數(shù)為45.求:
(1)含x5的項;
(2)系數(shù)最大的項.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.若函數(shù)f(x)=x2-2x+m在[3,+∞)上的最小值為1,則實數(shù)m的值為-2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知i為虛數(shù)單位,(2+i)•z=-1+2i,則復數(shù)z=( 。
A.$\frac{4}{3}$+iB.-iC.iD.$\frac{4}{3}$-i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.函數(shù)f(x)=x3-3x2+5在區(qū)間$[{1,\frac{5}{2}}]$上的最小值是1.

查看答案和解析>>

同步練習冊答案