8.如圖,在△ABC中,$\overrightarrow{AM}=\frac{1}{3}\overrightarrow{AB}$,$\overrightarrow{AN}=\frac{1}{4}\overrightarrow{AC}$,BN與CM交于點(diǎn)E,若$\overrightarrow{AE}=x\overrightarrow{AB}+y\overrightarrow{AC}$,則x+y=$\frac{5}{11}$.

分析 可根據(jù)共線向量基本定理,由B,E,N三點(diǎn)共線得到$\overrightarrow{BE}=λ\overrightarrow{BN}$,進(jìn)一步便得到$\overrightarrow{AE}=(1-λ)\overrightarrow{AB}+\frac{λ}{4}\overrightarrow{AC}$,而同理可由C,E,M三點(diǎn)共線得到$\overrightarrow{AE}=(1-μ)\overrightarrow{AC}+\frac{μ}{3}\overrightarrow{AB}$,從而便有$\left\{\begin{array}{l}{1+λ=\frac{μ}{3}}\\{\frac{λ}{4}=1-μ}\end{array}\right.$,這樣解出λ,μ便可用$\overrightarrow{AB},\overrightarrow{AC}$表示出$\overrightarrow{AE}$,從而求出x+y.

解答 解:B,E,N三點(diǎn)共線;
∴$\overrightarrow{BE}=λ\overrightarrow{BN}$;
∴$\overrightarrow{AE}-\overrightarrow{AB}=λ(\overrightarrow{AN}-\overrightarrow{AB})$;
∴$\overrightarrow{AE}=(1-λ)\overrightarrow{AB}+\frac{λ}{4}\overrightarrow{AC}$①;
同理由C,E,M三點(diǎn)共線可得:$\overrightarrow{AE}=(1-μ)\overrightarrow{AC}+\frac{μ}{3}\overrightarrow{AB}$②;
∴由①②得,$\left\{\begin{array}{l}{1-λ=\frac{μ}{3}}\\{\frac{λ}{4}=1-μ}\end{array}\right.$;
解得$λ=\frac{8}{11},μ=\frac{9}{11}$;
∴$\overrightarrow{AE}=\frac{3}{11}\overrightarrow{AB}+\frac{2}{11}\overrightarrow{AC}$;
又$\overrightarrow{AE}=x\overrightarrow{AB}+y\overrightarrow{AC}$;
∴$x+y=\frac{5}{11}$.
故答案為:$\frac{5}{11}$.

點(diǎn)評 考查共線向量基本定理,平面向量基本定理,以及的加法、減法,及數(shù)乘運(yùn)算,向量減法的幾何意義.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知函數(shù)f(x)=$\left\{\begin{array}{l}{2-|x|,x≤2}\\{(x-2)^2,x>2}\end{array}\right.$,函數(shù)g(x)=2x-2則函數(shù)F(x)=f(x)-g(x)的零點(diǎn)個(gè)數(shù)為(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.設(shè)全集U={(x,y)|y=x+1,x,y∈R},M={(x,y)|$\frac{y-3}{x-2}$=1},則∁UM={(2,3)}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.下列函數(shù)中,在(0,2)上為增函數(shù)的是( 。
A.$y={log_{\frac{1}{2}}}(x+1)$B.$y={log_2}\sqrt{{x^2}-1}$C.$y={log_2}\frac{1}{x}$D.$y={log_{0.2}}(4-{x^2})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.不等式log${\;}_{\frac{1}{2}}$x≥2的解集為(0,$\frac{1}{4}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.下列每組中的兩個(gè)函數(shù)是同一函數(shù)的是( 。
A.f(x)=1與g(x)=x0B.$f(x)=\root{3}{x^3}$與g(x)=xC.f(x)=x與$g(x)={(\sqrt{x})^2}$D.f(x)=x與$g(x)=\sqrt{x^2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.己知曲線f(x)=$\frac{2}{3}$x3-x2+ax-1存在兩條斜率為3的切線,且切點(diǎn)的橫坐標(biāo)都大于零,則實(shí)數(shù)a的取值范圍為(3,$\frac{7}{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.$a=-\frac{1}{2}$是函數(shù)f(x)=ln(ex+1)+ax為偶函數(shù)的充要條條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知集合A={x|a≤x≤a+3},B={x|x≤-1或x≥3},
(1)若A∩B=∅,求實(shí)數(shù)a的范圍;
(2)若A⊆B,求實(shí)數(shù)a的范圍.

查看答案和解析>>

同步練習(xí)冊答案