15.在(1+x)2n+x(1+x)2n-1+…+xn(1+x)n的展開式中,xn的系數(shù)為( 。
A.$\frac{(2n+1)!}{n!n!}$B.$\frac{(2n+2)!}{n!n!}$C.$\frac{(2n+1)!}{n!(n+1)!}$D.$\frac{(2n+2)!}{n!(n+1)!}$

分析 根據(jù)二項(xiàng)式展開式的通項(xiàng)公式,得出展開式中xn項(xiàng)的系數(shù)為C2nn+C2n-1n-1+C2n-2nn-2+…+Cn+11+Cn0,計(jì)算即可.

解答 解:(1+x)2n中xn的系數(shù)為C2nn,
x(1+x)2n-1中xn的系數(shù)為C2n-1n-1
x2(1+x)2n-2中xn的系數(shù)為C2n-2n-2,
…,xn(1+x)n中xn的系數(shù)為Cn0;
所以展開式中xn項(xiàng)的系數(shù)為
C2nn+C2n-1n-1+C2n-2nn-2+…+Cn+11+Cn0=C2nn+C2n-1n+C2n-2n+…+Cn+1n+Cnn
=C2nn+C2n-1n+C2n-2n+…+Cn+1n+Cnn
=C2nn+C2n-1n+C2n-2n+…+Cn+1n+Cn+1n+1
=C2n+1n+1
=$\frac{(2n+1)!}{n!•(n+1)!}$.
故選:C.

點(diǎn)評(píng) 本題考查了二項(xiàng)式定理的應(yīng)用問題,也考查了推理與計(jì)算能力,正確運(yùn)用二項(xiàng)式定理是解題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.觀察下列等式:
$\begin{array}{l}(1+1)=2×1\\(2+1)(2+2)={2^2}×1×3\\(3+1)(3+2)(3+3)={2^3}×1×3×5\end{array}$

照此規(guī)律,第n個(gè)等式可為(n+1)(n+2)…(n+n)=2n×1×3×…×(2n-1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.函數(shù)y=-$\frac{2}{x}$的值域?yàn)閧y∈R|y≠0}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知數(shù)列{an}的前n項(xiàng)和為Sn,且滿足Sn=2an-2.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)函數(shù)f(x)=($\frac{1}{2}$)x,數(shù)列{bn}滿足條件b1=2,f(bn+1)=$\frac{1}{f(-3-_{n})}$,(n∈N*),若cn=$\frac{_{n}}{{a}_{n}}$,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.設(shè)向量$\overrightarrow a$與$\overrightarrow b$的夾角為θ,若$\overrightarrow a$=(1,2),2$\overrightarrow b$-$\overrightarrow a$=(-1,2),則cosθ=$\frac{2\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.設(shè)函數(shù)f(x)=ex-ax+a.
(1)若f(x)的圖象與x軸有2個(gè)交點(diǎn),求實(shí)數(shù)a的取值范圍;
(2)設(shè)g(x)=3ax2-ax+2+a,若f(x)+e-x≥g(x)對(duì)x∈R恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}1,x≥0\\-1,x<0\end{array}$,g(x)=$\frac{x^2}{e^x}$f(x-1),則函數(shù)g(x)的遞增區(qū)間是(-∞,0],[1,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.要得到函數(shù)y=cos2x的圖象,只需將函數(shù)y=cos(2x+$\frac{π}{3}$)的圖象(  )
A.向右平移$\frac{π}{6}$個(gè)單位B.向右平移$\frac{π}{3}$個(gè)單位
C.向左平移$\frac{π}{3}$個(gè)單位D.向左平移$\frac{π}{6}$個(gè)單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.設(shè)x∈R,向量$\overrightarrow{a}$=(x,1),$\overrightarrow$=(1,-2),且$\overrightarrow{a}$⊥$\overrightarrow$,則x=2.

查看答案和解析>>

同步練習(xí)冊(cè)答案