分析 (Ⅰ)利用二倍角余弦公式的變形、兩角和的余弦公式化簡方程,由內角的范圍和特殊角的三角函數值求出角C的值;
(Ⅱ)在△ABC中,由余弦定理求出AB、cosB的值,由向量的關系求出BD的值,在△BCD中由余弦定理求出CD的值.
解答 解:(Ⅰ)∵2cos2$\frac{A}{2}$+(cosB-$\sqrt{3}$sinB)cosC=1,
∴cosA+cosBcosC-$\sqrt{3}$sinBcosC=0,
又A+B+C=π,則cosA=-cos(B+C),代入上式得,
-cosBcosC+sinBsinC+cosBcosC-$\sqrt{3}$sinBcosC=0,
∴sinBsinC-$\sqrt{3}$sinBcosC=0,
由sinB≠0得,sinC-$\sqrt{3}$cosC=0,則tanC=$\sqrt{3}$,
∵0<C<π,∴C=$\frac{π}{3}$;
(Ⅱ)在△ABC中,AC=3,CB=1,C=$\frac{π}{3}$,
由余弦定理得,AB2=AC2+BC2-2AC•BC•cosC
=9+1-2×$3×1×\frac{1}{2}$=7,則AB=$\sqrt{7}$,
∴cosB=$\frac{A{B}^{2}+B{C}^{2}-A{C}^{2}}{2•AB•BC}$=$\frac{7+1-9}{2×\sqrt{7}×1}$=$-\frac{1}{2\sqrt{7}}$,
∵$\overrightarrow{AD}$=3$\overrightarrow{DB}$,∴AD=$\frac{3\sqrt{7}}{4}$,BD=$\frac{\sqrt{7}}{4}$,
在△BCD中,由余弦定理得,
CD2=BC2+BD2-2•BC•BD•cosB
=1+$\frac{7}{16}$-2×1×$\frac{\sqrt{7}}{4}$×($-\frac{1}{2\sqrt{7}}$)=$\frac{3}{2}$,
則CD=$\frac{\sqrt{6}}{2}$.
點評 本題考查了二倍角余弦公式的變形、兩角和的余弦公式,以及余弦定理的應用,考查化簡、計算能力.
科目:高中數學 來源: 題型:選擇題
A. | a>b>c | B. | a>c>b | C. | b>a>c | D. | c>b>a |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | a<0或a=$\frac{1}{2}$ | B. | 0≤a<$\frac{1}{2}$ | C. | a>$\frac{1}{2}$ | D. | 不存在實數a |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | -2 | B. | -1 | C. | 0 | D. | 1 |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com