2.已知函數(shù)f(x)=x2-2x+a在[2,3]上的最大值與最小值之和為5,則實(shí)數(shù)a的值為( 。
A.1B.2C.3D.4

分析 根據(jù)f(x)開口朝上,對稱軸為 x=1,f(x)在[2,3]是單調(diào)遞增函數(shù),求出函數(shù)的最大值與最小值.

解答 解:由題意知,f(x) 開口朝上,對稱軸為 x=1在區(qū)間[2,3]左側(cè),f(x)在[2,3]是單調(diào)遞增函數(shù);
∴f(x)在x=2處取得最小值 f(2)=a,在x=3處取得最大值f(3)=3+a;
∴a+3+a=5⇒a=1.
故選:A.

點(diǎn)評 本題主要考查了一元二次函數(shù)的基本性質(zhì)與圖紙基本特征,屬簡單題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.經(jīng)過平面外兩點(diǎn)可作與該平面平行的平面?zhèn)數(shù)為0或1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=lnx-ax,(a∈R,x>0).
(1)當(dāng)a=2時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(2)當(dāng)a>0時(shí),求函數(shù)f(x)在[1,2]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.x的取值范圍為[0,10],給出如圖所示程序框圖,輸入一個(gè)數(shù)x.則輸出的x(x<6)的概率為$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.某種新藥服用x小時(shí)后血液中殘留為y毫克,如圖所示為函數(shù)y=f(x)的圖象,當(dāng)血液中藥物殘留量不小于240毫克時(shí),治療有效.設(shè)某人上午8:00第一次服藥,為保證療效,則第二次服藥最遲的時(shí)間應(yīng)為( 。
A.上午10:00B.中午12:00C.下午4:00D.下午6:00

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=$\left\{\begin{array}{l}{-x-1(x<-1)}\\{-{x}^{2}+1(-1≤x≤1)}\\{x-1(x>1)}\end{array}\right.$.
(1)求f(2),f(-2).
(2)若f(a)=1,求實(shí)數(shù)a的值.
(3)判斷函數(shù)f(x)的奇偶性(只寫出結(jié)果,不需證明)
(4)寫出函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.幾何體ABCDEF如圖所示,其中AC⊥AB,AC=3,AB=4,AE、CD、BF均垂直于面ABC,且AE=CD=5,BF=3,則這個(gè)幾何體的體積為26.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.下列說法正確的是( 。
A.“x<0”是“l(fā)n(x+1)<0”的充要條件
B.“?x≥2,x2-3x+2≥0”的否定是“?x<2,x2-3x+2<0”
C.采用系統(tǒng)抽樣法從某班按學(xué)號(hào)抽取5名同學(xué)參加活動(dòng),學(xué)號(hào)為5,16,27,38,49的同學(xué)均被選出,則該班學(xué)生人數(shù)可能為60
D.已知回歸直線的斜率的估計(jì)值為1.23,樣本點(diǎn)的中心為(4,5),則回歸直線方程是$\widehat{y}$=1.23x+0.08

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知P為△ABC所在平面外一點(diǎn),平面α∥平面ABC,且α交線段PA,PB,PC于點(diǎn)A′,B′,C′,若PA′:AA′=2:3,則S△A′B′C′:S△ABC=( 。
A.2:3B.2:5C.4:9D.4:25

查看答案和解析>>

同步練習(xí)冊答案