14.已知兩定點M(-1,0),N(1,0),直線l:y=-2x+3,在l上滿足|PM|+|PN|=4的點P有2個.

分析 運用橢圓的定義可得,點P的軌跡方程是$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}$=1,把=-2x+3代入$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}$=1,由判別式大于0,即可得出結(jié)論.

解答 解:由橢圓的定義可知,點P的軌跡是以M,N為焦點的橢圓,其方程是$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}$=1,
把y=-2x+3代入$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}$=1,并整理得,19x2-48x+24=0,由△=(-48)2-4×19×24>0,
∴在l上滿足|PM|+|PN|=4的點P有2個.
故答案為:2.

點評 本題考查了橢圓的定義及標(biāo)準(zhǔn)方程,考查了數(shù)學(xué)轉(zhuǎn)化思想方法及方程思想方法,解答此題的關(guān)鍵是把問題轉(zhuǎn)化為判斷直線方程與橢圓方程聯(lián)立的方程組是否有解,屬中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.函數(shù)y=lgx+$\sqrt{2-x}$的定義域為( 。
A.{x|x≤2}B.{x|x>0}C.{x|x<0或x≥2}D.{x|0<x≤2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.△ABC是邊長為1的等邊三角形,已知向量$\overrightarrow{a}$,$\overrightarrow$滿足$\overrightarrow{AB}$=2$\overrightarrow{a}$,$\overrightarrow{AC}$=2$\overrightarrow{a}$+$\overrightarrow$,則下列結(jié)論正確的是(  )
A.|$\overrightarrow$|=2B.$\overrightarrow{a}$⊥$\overrightarrow$C.$\overrightarrow{a}$•$\overrightarrow$=$\frac{1}{2}$D.($\overrightarrow{a}$+$\frac{1}{4}$$\overrightarrow$)⊥$\overrightarrow{BC}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.在等差數(shù)列{an}中,a2+3a8+a14=100,則2a11-a14=( 。
A.20B.18C.16D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知函數(shù)f(x)=$\frac{2}{{2}^{x}+1}$+sinx,則f(2017)+f(-2017)=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.如圖所示,網(wǎng)格紙上小正方形的邊長為1,粗線為某空間幾何體的三視圖,則該幾何體的體積為(  )
A.8B.6C.4D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.函數(shù)f(x)=4x2-kx-8在(-∞,8]上是單調(diào)函數(shù),則k的取值范圍是[64,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.橢圓$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1的左右焦點為F1,F(xiàn)2,P為橢圓上任一點,則|PF1||PF2|的最小值為(  )
A.25B.16C.10D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知PA垂直于矩形ABCD所在平面,M,N分別是AB,PC的中點.
(1)MN∥平面PAD;
(2)求證:MN⊥CD;
(3)若平面PDC與平面ABCD成45°角,求證:MN⊥面PCD.

查看答案和解析>>

同步練習(xí)冊答案