6.函數(shù)f(x)=4x2-kx-8在(-∞,8]上是單調(diào)函數(shù),則k的取值范圍是[64,+∞).

分析 先求出二次函數(shù)的對稱軸,欲使(-∞,8]上是單調(diào)函數(shù)只需對稱軸不在這個區(qū)間上,從而建立不等式,解之即可.

解答 解:根據(jù)二次函數(shù)的性質(zhì)知對稱軸 x=$\frac{k}{8}$,
在(-∞,8]上是單調(diào)函數(shù)則對稱軸不能在這個區(qū)間上
∴$\frac{k}{8}$≥8,
得k≥64.
故答案為:[64,+∞).

點評 本題考查二次函數(shù)的性質(zhì),本題解題的關(guān)鍵是看出二次函數(shù)在一個區(qū)間上單調(diào),只有對稱軸不在這個區(qū)間上,本題是一個基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.在平面直角坐標(biāo)系xOy中,點M到F(1,0)的距離比它到y(tǒng)軸的距離大1.
(Ⅰ)求點M的軌跡C的方程;
(Ⅱ)若在y軸右側(cè),曲線C上存在兩點關(guān)于直線x-2y-m=0對稱,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.在平面直角坐標(biāo)系xOy中,以坐標(biāo)原點為極點,x軸正半軸為極軸建立坐標(biāo)系,曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=2+cosθ}\\{y=sinθ}\end{array}\right.$(θ為參數(shù)).
(1)求曲線C1的直角坐標(biāo)方程;
(2)曲線C2的極坐標(biāo)方程為θ=$\frac{π}{6}$(ρ∈R),求C1與C2的公共點的極坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知兩定點M(-1,0),N(1,0),直線l:y=-2x+3,在l上滿足|PM|+|PN|=4的點P有2個.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.設(shè)a={(x,y)|4x+m y=6},b={(x,y)|y=nx-3}且a∩b={(1,2)},則m=1    n=5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.如圖是正方體的平面展開圖,則在這個正方體中,以下四個判斷中,正確的序號是②④.
①BM與ED平行;②CN與BE是異面直線;③CN與BM成60°角;④DM與BN是異面直線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=22x-2xa-(a+1).
(1)若a=2,解不等式f(x)<0;
(2)若f(x)有零點,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)直線y=x+2a與圓C:x2+y2-2ay-2=0相交于A,B兩點,若|AB|=2$\sqrt{3}$,則圓C的內(nèi)接正三角形的面積為(  )
A.4B.8C.3$\sqrt{3}$D.4$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)f(x)是奇函數(shù),且在(0,+∞)內(nèi)是增加的,又f(-3)=0,則x•f(x)<0的解集是( 。
A.{x|-3<x<0,或x>3}B.{x|x<-3,或0<x<3}C.{x|-3<x<0,或0<x<3}D.{x|x<-3,或x>3}

查看答案和解析>>

同步練習(xí)冊答案