分析 先求出二次函數(shù)的對稱軸,欲使(-∞,8]上是單調(diào)函數(shù)只需對稱軸不在這個區(qū)間上,從而建立不等式,解之即可.
解答 解:根據(jù)二次函數(shù)的性質(zhì)知對稱軸 x=$\frac{k}{8}$,
在(-∞,8]上是單調(diào)函數(shù)則對稱軸不能在這個區(qū)間上
∴$\frac{k}{8}$≥8,
得k≥64.
故答案為:[64,+∞).
點評 本題考查二次函數(shù)的性質(zhì),本題解題的關(guān)鍵是看出二次函數(shù)在一個區(qū)間上單調(diào),只有對稱軸不在這個區(qū)間上,本題是一個基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | 8 | C. | 3$\sqrt{3}$ | D. | 4$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|-3<x<0,或x>3} | B. | {x|x<-3,或0<x<3} | C. | {x|-3<x<0,或0<x<3} | D. | {x|x<-3,或x>3} |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com