17.雙曲線$\frac{x^2}{2}$-y2=-1的焦點到其漸近線的距離等于(  )
A.$\frac{1}{2}$B.$\sqrt{2}$C.1D.$\frac{\sqrt{2}}{2}$

分析 先由題中條件求出焦點坐標和漸近線方程,再代入點到直線的距離公式即可求出結(jié)論.

解答 解:由題得:雙曲線$\frac{x^2}{2}$-y2=-1其焦點坐標為(0,$\sqrt{3}$),(0,-$\sqrt{3}$).漸近線方程為$\sqrt{2}$y=±x
所以焦點到其漸近線的距離d=$\frac{\sqrt{2}•\sqrt{3}}{\sqrt{1+2}}$=$\sqrt{2}$.
故選:B.

點評 本題主要考查雙曲線的基本性質(zhì).點到直線距離公式的應(yīng)用,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2017屆河北滄州市高三9月聯(lián)考數(shù)學(xué)(文)試卷(解析版) 題型:選擇題

執(zhí)行如圖所示的算法,則輸出的結(jié)果是( )

A.2 B. C. D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.設(shè)數(shù)列{an}滿足a1=2,且an+1-an=2n+2,則數(shù)列$\left\{{\frac{1}{a_n}}\right\}$的前5項和為$\frac{5}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知數(shù)列{log2xn}是公差為1的等差數(shù)列,數(shù)列{xn}的前100項的和等于100,則數(shù)列{xn}的前200項的和等于100×(1+2100).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在△ABC中,內(nèi)角A,B,C所對的三邊分別是a,b,c,已知cosC+$\frac{c}$cosB=2,
(1)求$\frac{sinA}{sinB}$;
(2)若C=$\frac{π}{3}$,c=2$\sqrt{3}$,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.(1)計算$\frac{2{A}_{8}^{5}+7{A}_{8}^{4}}{{A}_{8}^{8}-{A}_{9}^{5}}$     
(2)計算:C${\;}_{200}^{198}$+C${\;}_{200}^{196}$+2C${\;}_{200}^{197}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2017屆河北滄州市高三9月聯(lián)考數(shù)學(xué)(理)試卷(解析版) 題型:解答題

如圖,在三棱柱中,平面,,,,,為線段上一點.

(Ⅰ)求的值,使得平面

(Ⅱ)在(Ⅰ)的條件下,求二面角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知圓C1:x2+y2=1與圓C2:x2+y2-6x-8y+F=0相內(nèi)切,則F=-11.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.設(shè)直線參數(shù)方程為$\left\{{\begin{array}{l}{x=2+\frac{t}{2}}\\{y=3+\frac{{\sqrt{3}}}{2}t}\end{array}}\right.$(t為參數(shù)),則它的普通方程為$\sqrt{3}$x-y-2$\sqrt{3}$+3=0.

查看答案和解析>>

同步練習(xí)冊答案