【題目】某單位開展崗前培訓期間,甲、乙2人參加了5次考試,成績統(tǒng)計如下:
第一次 | 第二次 | 第三次 | 第四次 | 第五次 | |
甲的成績 | 82 | 82 | 79 | 95 | 87 |
乙的成績 | 95 | 75 | 80 | 90 | 85 |
(1)根據(jù)有關統(tǒng)計知識回答問題:若從甲、乙2人中選出1人上崗,你認為選誰合適?請說明理由;
(2)根據(jù)有關概率知識解答以下問題:若一次考試兩人成績之差的絕對值不超過3分,則稱該次考試兩人“水平相當”.由上述5次成績統(tǒng)計,任意抽查兩次考試,求至少有一次考試兩人“水平相當”的概率.
【答案】(1)應派甲去,理由見解析(2)
【解析】
(1)先求出甲和乙的平均成績相同,再求出甲和乙的成績的方差,方差較小的發(fā)揮比較穩(wěn)定,應該派他去(2)從5次考試的成績中,任意取出2次的成績,所有的基本事件有10個,用列舉法求得滿足條件至少有一次考試兩人“水平相當”的有7個,由此求得所求事件的概率.
(1)甲的平均成績?yōu)?/span>,
乙的平均成績?yōu)?/span>,
故甲乙二人的平均水平一樣.
甲的成績的方差為,
乙的成績的方差為,
,故應派甲合適.
(2)從5次考試的成績中,任意取出2次,所有的基本事件有個,
其中,滿足至少有一次考試兩人“水平相當”的有7個:和、和、和、和、和、和、和,共有7個,
故所求事件的概率等于 .
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)y=f(x)的定義域為R,并且滿足f(x+y)=f(x)+f(y),f()=1,當x>0時,f(x)>0.
(1)求f(0)的值;
(2)判斷函數(shù)的奇偶性;
(3)如果f(x)+f(2+x)<2,求x的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐P-ABCD中,底面ABCD為矩形,PA⊥平面ABCD,E為PD的中點.
(1) 證明:PB∥平面AEC
(2) 設二面角D-AE-C為60°,AP=1,AD=,求三棱錐E-ACD的體積
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】定義:若兩個橢圓的離心率相等,則稱兩個橢圓是“相似”的.如圖,橢圓與橢圓是相似的兩個橢圓,并且相交于上下兩個頂點,橢圓的長軸長是4,橢圓長軸長是2,點,分別是橢圓的左焦點與右焦點.
(1)求橢圓,的方程;
(2)過的直線交橢圓于點,,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知下列各組命題,其中是的充分必要條件的是( )
①:或;:有兩個不同的零點
②;是偶函數(shù);
③:;:
④:;:,,
A.④B.③C.②D.①
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:經(jīng)過點,離心率為.
(1)求橢圓的標準方程;
(2)過坐標原點作直線交橢圓于、兩點,過點作的平行線交橢圓于、兩點.
①是否存在常數(shù),滿足?若存在,求出這個常數(shù);若不存在,請說明理由;
②若的面積為, 的面積為,且,求的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知某摸球游戲的規(guī)則如下:從裝有5個大小、形狀完全相同的小球的盒中摸球(其中3個紅球、2個黃球),每次摸一個球記錄顏色并放回,若摸出紅球記1分,摸出黃球記2分.
(1)求“摸球三次得分為5分”的概率;
(2)設ξ為摸球三次所得的分數(shù),求隨機變量ξ的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2019年1月1日起我國實施了個人所得稅的新政策,新政策的主要內容有:①個稅起征點為5000元,②每月應納稅所得額(含稅)=收入個稅起征點專項附加扣除.趙先生某月收入元,符合贍養(yǎng)老人與子女教育專項附加扣除,共計3000元.
新個稅政策的稅率表部分內容如下:
級數(shù) | 一級 | 二級 | 三級 | … |
每月應納稅所得額(含稅) | 不超過3000元的部分 | 超過3000元至12000元的部分 | 超過12000元25000元的部分 | … |
稅率(%) | 3 | 10 | 20 | … |
(1)當時,趙先生當月應繳納的個稅額是多少?
(2)設趙先生當月應繳納的個稅額是元,若,請求出關于的函數(shù);
(3)若趙先生該月應納的個稅額為3020元,問他的月收入是多少元?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若存在正數(shù)x,y,使得,其中e為自然對數(shù)的底數(shù),則實數(shù)的取值范圍是_____________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com