18.在各項均為正數(shù)的等比數(shù)列{an}中,a1=2且a2,a4+2,a5成等差數(shù)列,記Sn是數(shù)列{an}的前n項和,則S5=( 。
A.32B.62C.27D.81

分析 利用等差數(shù)列的性質(zhì)及等比數(shù)列的通項公式求出公比,然后代入等比數(shù)列的前n項和公式得答案.

解答 解:設(shè)各項均為正數(shù)的等比數(shù)列{an}的公比為q,又a1=2,
則a2=2q,a4+2=2q3+2,a5=2q4,
∵a2,a4+2,a5成等差數(shù)列,
∴4q3+4=2q+2q4,
∴2(q3+1)=q(q3+1),
由q>0,解得q=2,
∴${S}_{5}=\frac{2(1-{2}^{5})}{1-2}=62$.
故選:B.

點評 本題考查等比數(shù)列前n項和,考查了等差數(shù)列性質(zhì)的應(yīng)用,是基礎(chǔ)的計算題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.解方程:sin2x=sin2x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.點M(x,y)滿足不等組$\left\{\begin{array}{l}{3x-y-6≤0}\\{x-y+2≥0}\\{x≥0,y≥0}\end{array}\right.$,點P($\frac{1}{a}$,$\frac{1}$)(a>0,b>0),若$\overrightarrow{OP}$•$\overrightarrow{OM}$的最大值為6,則3a+b的最小值為( 。
A.4$\sqrt{2}$B.9C.3+2$\sqrt{2}$D.3$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)y=f(x)的圖象向左平移$\frac{π}{4}$個單位后與函數(shù)g(x)=$\sqrt{3}$sinxcosx-sin(2x-$\frac{π}{6}$)的圖象重合.已知△ABC中三個內(nèi)角A,B,C所對的邊分別為a,b,c.
(1)求f(x)的最小正周期T和單調(diào)遞增區(qū)間;
(2)若f(A)=$\frac{1}{2}$,tanC=$\sqrt{2}$,c=$\sqrt{6}$,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知$\overrightarrow{a}$,$\overrightarrow$為同一平面內(nèi)的兩個向量,且$\overrightarrow{a}$=(1,2),|$\overrightarrow$|=$\frac{1}{2}$|$\overrightarrow{a}$|,若$\overrightarrow{a}$+2$\overrightarrow$與2$\overrightarrow{a}$-$\overrightarrow$垂直,則$\overrightarrow{a}$與$\overrightarrow$的夾角為( 。
A.0B.$\frac{π}{4}$C.$\frac{2π}{3}$D.π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知$\left\{\begin{array}{l}{2x+y-2≥0}\\{x-2y+4≥0}\\{3x-y-3≤0}\end{array}\right.$,求z=|2x+y+5|的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.在二項式(1-2x)n(n∈N*)的展開式中,偶數(shù)項的二項式系數(shù)之和為128.
(1)求展開式中的二項式系數(shù)最大項;
(2)若展開式的第二項大于第三項,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.若(3-4x+x2)(2+x-x23=a0+a1(1+x)+a2(1+x)2+…+a8(1+x)8,則a0+a1+a2+…+a8=24.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.某市新區(qū)一街道AB長1500米,街道A處有大量河沙,為方便工作,需要提前在街面上每隔50米放置一車沙,現(xiàn)用一輛車將A年的沙由到遠依次倒放在指定地點,問:將所有各點的沙倒完時,這輛車共往返行駛了多少路程?

查看答案和解析>>

同步練習(xí)冊答案