A. | a>b>c | B. | c>b>a | C. | c>a>b | D. | a>c>b |
分析 先確定xf(x)在 (0,+∞)上是增函數(shù),再確定變量的大小關(guān)系,即可得到結(jié)論.
解答 解:∵當(dāng)x∈(0,+∞)時不等式f(x)+xf′(x)>0成立,
∴(xf(x))′<0,
∴xf(x)在 (0,+∞)上是增函數(shù).
又∵函數(shù)y=f(x)是定義在R上的奇函數(shù),
∴xf(x)是定義在R上的偶函數(shù),
∴xf(x)在 (-∞,0)上是減函數(shù).
∵|log4$\frac{1}{16}$|<40.2<log43,
∴c>a>b.
故選:C.
點評 本題考查導(dǎo)數(shù)知識的運用,考查由已知函數(shù)構(gòu)造新函數(shù)用原函數(shù)的性質(zhì)來研究新函數(shù),屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $A_5^4$ | B. | 54 | C. | 45 | D. | 4×5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{13}{65}$ | B. | $\frac{15}{65}$ | C. | $\frac{48}{65}$ | D. | $\frac{63}{65}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com