分析 (1)運(yùn)用向量的數(shù)量積的坐標(biāo)表示,結(jié)合兩角和的正弦公式,即可求得角B的值;
(2)結(jié)合余弦定理得到△ABC為等邊三角形,問(wèn)題得以解決.
解答 解:(1)$\overrightarrow m$=(-2a+c,b),$\overrightarrow n$=(cosB,cosC),且 $\overrightarrow m$•$\overrightarrow n$=0.
∴(-2a+c)cosB+bcosC=0,
∴(-2sinA+sinC)cosB+sinBcosC=0,
∴-2sinAcosB+sinCcosB+sinBcosC=0,
∴-2sinAcosB+sin(C+B)=0,
∴-2sinAcosB+sinA=0,
∴cosB=$\frac{1}{2}$,
∴B=60°,
(2)由余弦定理可得b2=a2+c2-2accosB=ac,
∴(a-c)2=0,
∴a=c,
又B=60°,
∴△ABC為等邊三角形,
∴A=C=60°,
∴$\frac{1}{tanA}+\frac{1}{tanC}$=$\frac{1}{\sqrt{3}}$+$\frac{1}{\sqrt{3}}$=$\frac{2\sqrt{3}}{3}$
點(diǎn)評(píng) 本題考查向量的數(shù)量積的坐標(biāo)表示,以及三角函數(shù)的化簡(jiǎn)和求值,考查正弦定理的運(yùn)用,以及運(yùn)算求解能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
積極參加班級(jí)工作 | 不太主動(dòng)參加班級(jí)工作 | 合計(jì) | |
學(xué)習(xí)積極性高 | 18 | 7 | 25 |
學(xué)習(xí)積極性一般 | 6 | 19 | 25 |
合計(jì) | 24 | 26 | 50 |
P(K2≥k) | … | 0.25 | 0.15 | 0.10 | 0.025 | 0.010 | 0.005 | 0.001 |
k | … | 1.323 | 2.072 | 2.706 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 15° | B. | 75° | C. | 105° | D. | 165° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
價(jià)格x | 5 | 5.5 | 6.5 | 7 |
銷售量y | 12 | 10 | 6 | 4 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com