分析 將所給等式移項、取倒數(shù),設(shè)bn=$\frac{1}{n{a}_{n}}$,運用等差數(shù)列的定義和通項公式,可得an=$\frac{1}{n(n+1)}$=$\frac{1}{n}$-$\frac{1}{n+1}$,再由數(shù)列的求和方法:裂項相消求和,化簡整理,即可得到所求和.
解答 解:an+1=$\frac{n{a}_{n}}{(n+1)(n{a}_{n}+1)}$,可得(n+1)an+1=$\frac{n{a}_{n}}{n{a}_{n}+1}$,
即有$\frac{1}{(n+1){a}_{n+1}}$=$\frac{1}{n{a}_{n}}$+1,
設(shè)bn=$\frac{1}{n{a}_{n}}$,則bn+1=bn+1,
可得數(shù)列{bn}為首項為2,公差為1的等差數(shù)列,
即有bn=2+n-1=n+1,
可得an=$\frac{1}{n(n+1)}$=$\frac{1}{n}$-$\frac{1}{n+1}$,
數(shù)列{an}的前2016項的和為1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+…+$\frac{1}{2016}$-$\frac{1}{2017}$=1-$\frac{1}{2017}$=$\frac{2016}{2017}$.
故答案為:$\frac{2016}{2017}$.
點評 本題考查數(shù)列的求和方法:裂項相消求和,同時考查等差數(shù)列的通項公式和運用,考查化簡整理的運算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 0 | B. | 2 | C. | 4 | D. | 6 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $f({\frac{1}{3}})<f(2)<f({\frac{1}{2}})$ | B. | $f({\frac{1}{2}})<f(2)<f({\frac{1}{3}})$ | C. | $f({\frac{1}{2}})<f({\frac{1}{3}})<f(2)$ | D. | $f(2)<f({\frac{1}{3}})<f({\frac{1}{2}})$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 充分而不必要條件 | B. | 必要而不充分條件 | ||
C. | 充分必要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com