分析 利用直方圖與平行四邊形的性質(zhì)可得:BC1∥AD1,利用線面平行的判定定理可得BC1∥平面AB1D1,同理可得:BD∥平面AB1D1,即可證明:平面C1BD∥平面AB1D1.
解答 證明:∵ABCD-A1B1C1D1為正方體,
∴在平行四邊形ABC1D1中,BC1∥AD1,
又AD1?平面AB1D1,BC1?平面AB1D1,
∴BC1∥平面AB1D1,
同理可得:BD∥平面AB1D1,且BC1∩BD=B,
∴平面C1BD∥平面AB1D1.
點(diǎn)評(píng) 本題考查了空間位置關(guān)系與空間角、線面、面面平行的判定與性質(zhì)定理、線面、面面垂直的判定與性質(zhì)定理、空間角,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -2 | B. | $-2\sqrt{2}$ | C. | 2 | D. | $2\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ($\frac{2}{3},\frac{5}{6}$) | B. | ($\frac{2}{3}$,1) | C. | ($\frac{1}{4},\frac{3}{4}$) | D. | ($\frac{1}{4},\frac{5}{4}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com