18.設(shè)數(shù)列{an}的前n項(xiàng)和Sn,a1=2,且點(diǎn)An($\sqrt{{S}_{n}}$,$\sqrt{{S}_{n-1}}$)(n≥2)在曲線x2-y2=2n上.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)記數(shù)列{$\frac{{a}_{n}-1}{{2}^{n}}$}的前n項(xiàng)和為Tn,是否存在正整數(shù)n,使得Tn=3?若存在,求出n的值;若不存在,試說明理由.

分析 (1)由點(diǎn)An($\sqrt{{S}_{n}}$,$\sqrt{{S}_{n-1}}$)(n≥2)在曲線x2-y2=2n上.可得Sn-Sn-1=2n,即可得出.
(2)由(1)得$\frac{{a}_{n}-1}{{2}^{n}}$=$\frac{2n-1}{{2}^{n}}$,利用“錯(cuò)位相減法”與等比數(shù)列的前n項(xiàng)和公式即可得出.

解答 解:(1)由點(diǎn)An($\sqrt{{S}_{n}}$,$\sqrt{{S}_{n-1}}$)(n≥2)在曲線x2-y2=2n上.
∴Sn-Sn-1=2n,
(n≥2),即an=2n.
又aa1=2也適合上式,所以數(shù)列{an}的通項(xiàng)公式為an=2n(n∈N*).
(2)由(1)得$\frac{{a}_{n}-1}{{2}^{n}}$=$\frac{2n-1}{{2}^{n}}$,
∴Tn=$\frac{1}{2}+\frac{3}{{2}^{2}}$+…+$\frac{2n-1}{{2}^{n}}$,
$\frac{1}{2}$Tn=$\frac{1}{{2}^{2}}$+$\frac{3}{{2}^{3}}$+…+$\frac{2n-3}{{2}^{n}}$+$\frac{2n-1}{{2}^{n+1}}$,
兩式相減,得$\frac{1}{2}{T}_{n}$=$\frac{1}{2}$+2$(\frac{1}{{2}^{2}}+\frac{1}{{2}^{3}}+…+\frac{1}{{2}^{n}})$-$\frac{2n-1}{{2}^{n+1}}$=$\frac{1}{2}$+2×$\frac{\frac{1}{{2}^{2}}(1-\frac{1}{{2}^{n-1}})}{1-\frac{1}{2}}$-$\frac{2n-1}{{2}^{n+1}}$=$\frac{3}{2}$-$\frac{2n+3}{{2}^{n+1}}$,
∴Tn=3-$\frac{2n+3}{{2}^{n}}$<3.
即不存在正整數(shù)n,使得Tn=3.

點(diǎn)評(píng) 本題考查了“錯(cuò)位相減法”、等比數(shù)列的前n項(xiàng)和公式、遞推關(guān)系,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知函數(shù)f(x),且當(dāng)f(x)≠0時(shí)恒有$\frac{f(-x)}{f(x)}$=1成立,則( 。
A.f(x)必為偶函數(shù)B.f(x)必為奇函數(shù)
C.f(x)必為既奇又偶函數(shù)D.不能確定f(x)的奇偶性

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.在△ABC中,a,b,c分別是內(nèi)角A,B,C的對邊,已知a,b,c成等比數(shù)列.若 $\frac{sinA}{sinC}$-1=$\frac{a-b}{a+c}$,判斷△ABC的形狀(說明理由)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知f(x)是定義在R上的偶函數(shù),且當(dāng)x≤0時(shí),f(x)=2x+1+1.
(1)求f(x)的解析式;
(2)在所給的坐標(biāo)系內(nèi)畫出函數(shù)f(x)的草圖,并求方程f(x)=m恰有兩個(gè)不同實(shí)根時(shí)的實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知?jiǎng)狱c(diǎn)M(x,y)到點(diǎn)F(2,0)的距離比它到y(tǒng)軸的距離大2.
(1)求動(dòng)點(diǎn)M的軌跡方程C.
(2)已知斜率為2的直線經(jīng)過點(diǎn)F,且與軌跡C相交于A、B兩點(diǎn).求弦長|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知偶函數(shù)f(x)(x≠0)的導(dǎo)函數(shù)為f′(x),且滿足f(1)=0,當(dāng)x>0時(shí),xf′(x)<2f(x),則使得f(x)>0成立的x的取值范圍是(  )
A.(-∞,-1)∪(0,1)B.(-∞,-1)∪(1,+∞)C.(-1,0)∪(1,+∞)D.(-1,0)∪(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.對于函數(shù)f(x),若在其定義域內(nèi)存在兩個(gè)實(shí)數(shù)a,b(a<b),使當(dāng)x∈[a,b]時(shí),f(x)的值域也是[a,b],則稱函數(shù)f(x)為“布林函數(shù)”,區(qū)間[a,b]稱為函數(shù)f(x)的“等域區(qū)間”
(1)布林函數(shù)$f(x)=\sqrt{x}$的等域區(qū)間是:[0,1]
(2)若函數(shù)$f(x)=k+\sqrt{x+2}$是布林函數(shù),則實(shí)數(shù)k的取值范圍是:$({-\frac{9}{4},-2})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)短軸的兩個(gè)端點(diǎn)為A、B,點(diǎn)C為橢圓上異于A、B的一點(diǎn),直線AC與直線BC的斜率之積為-$\frac{1}{4}$,則橢圓的離心率為( 。
A.$\frac{\sqrt{3}}{2}$B.$\sqrt{3}$C.$\frac{1}{2}$D.$\frac{\sqrt{3}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.點(diǎn)M是圓x2+y2=4上的動(dòng)點(diǎn),點(diǎn)N與點(diǎn)M關(guān)于點(diǎn)A(1,1)對稱,則點(diǎn)N的軌跡方程是(x-2)2+(y-2)2=4.

查看答案和解析>>

同步練習(xí)冊答案