已知數(shù)列{an}為等差數(shù)列,且a1+a8+a15=π,cos(a4+a12)的值為α,則
1
0
xα
dx=
 
考點(diǎn):定積分,等差數(shù)列的通項(xiàng)公式
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:由數(shù)列{an}為等差數(shù)列,且a1+a8+a15=π利用等差數(shù)列的性質(zhì)得到a4+a12的值,然后求定積分.
解答: 解:因?yàn)閿?shù)列{an}為等差數(shù)列,且a1+a8+a15=π,a4+a12=2a8=
3
,
所以cos(a4+a12)=cos
3
=-
1
2
,
所以
1
0
xα
dx=
1
0
x-
1
2
dx=2x
1
2
|
1
0
=2;
故答案為:2.
點(diǎn)評(píng):本題考查了等差數(shù)列的性質(zhì)、定積分等知識(shí),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

集合A={(x,y)|x2+y2-2mx+m2≤4},B={(x,y)|x2+y2+2x-2my≤8-m2},若A∩B=A,則實(shí)數(shù)m的范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知tanα>0,且sinα+cosα<0,則( 。
A、cosα>0
B、cosα<0
C、cosα=0
D、cosα符號(hào)不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

山區(qū)一林場(chǎng)2013年底的木材存量為30萬(wàn)立方米,森林以每年20%的增長(zhǎng)率生長(zhǎng).從今年起每年年底要砍伐1萬(wàn)立方米的木材,設(shè)從今年起的第n年底的木材存量為an萬(wàn)立方米.
(Ⅰ)試寫(xiě)出an+1與an的關(guān)系式,并證明數(shù)列{an-5}是等比數(shù)列;
(Ⅱ)問(wèn)大約經(jīng)過(guò)多少年,林場(chǎng)的木材總存量達(dá)到125萬(wàn)立方米?(參考數(shù)據(jù):lg2=0.30,lg3=0.48)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)命題p:c2<c和命題q:對(duì)任意的x∈R,x2+4cx+1>0,若p∨q為真,p∧q為假,則實(shí)數(shù)c的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

橢圓25x2+9y2=225的長(zhǎng)軸長(zhǎng)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)向量
a
=(a1a2)
,
b
=(b1b2)
,定義一種向量積
a
?
b
=(a1b1a2b2)
,已知
m
=(2,
1
2
)
,
n
=(
π
3
,0)
,點(diǎn)P(x,y)在y=sinx的圖象上運(yùn)動(dòng).滿足
OQ
=
m
?
OP
+
n
(其中O為坐標(biāo)原點(diǎn)),則當(dāng)x∈[0,2π]時(shí),函數(shù)y=f(x)的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=asin2x+acos2x+b.
(Ⅰ)求證:函數(shù)f(x)的圖象關(guān)于直線x=
π
8
對(duì)稱
(Ⅱ)若函數(shù)f(x)的圖象過(guò)點(diǎn)A(0,1),且當(dāng)x∈[0,
π
4
]時(shí),f(x)≤b2恒成立,試確定實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

不相等的實(shí)數(shù)a、b、c成等差數(shù)列,c、a、b成等比數(shù)列,則a:b:c=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案