11.已知y=f(x)是定義在 R 上的奇函數(shù),且y=f(x+$\frac{π}{2}$)為偶函數(shù),對于函數(shù)y=f(x)有下列幾種描述:
①y=f(x)是周期函數(shù);
②x=π是它的一條對稱軸;
③(-π,0)是它圖象的一個(gè)對稱中心;
④x=$\frac{π}{2}$是它的一條對稱軸. 
其中描述正確的是①③④.

分析 根據(jù)函數(shù)的奇偶性和對稱性對每一個(gè)選支進(jìn)行逐一判定即可.

解答 解:∵y=f(x+$\frac{π}{2}$)為偶函數(shù),
∴f(-x+$\frac{π}{2}$)=f(x+$\frac{π}{2}$),對稱軸為x=$\frac{π}{2}$,
而y=f(x)是定義在R上的奇函數(shù)
∴f(-x+$\frac{π}{2}$)=-f(x-$\frac{π}{2}$)=f(x+$\frac{π}{2}$)
即f(x+$\frac{π}{2}$)=-f(x-$\frac{π}{2}$),
f(x+π)=-f(x),f(x+2π)=f(x)
∴y=f(x)是2π為最小正周期的周期函數(shù),故①正確,
x=$\frac{π}{2}$+2kπ(k∈Z)是它的對稱軸,故②不正確,④正確,
(-π,0)是它圖象的一個(gè)對稱中心,故③正確
故答案為:①③④.

點(diǎn)評 本題主要考查了函數(shù)奇偶性的性質(zhì)、對稱性、周期性等有關(guān)基礎(chǔ)知識,同時(shí)考查了轉(zhuǎn)化與劃歸的數(shù)學(xué)思想,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.我校要從參加數(shù)學(xué)競賽的1000名學(xué)生中,隨機(jī)抽取50名學(xué)生的成績進(jìn)行分析,現(xiàn)將參加數(shù)學(xué)競賽的1000名學(xué)生編號如下000,001,002,…,999,如果在第一組隨機(jī)抽取的一個(gè)號碼為015,則抽取的第40個(gè)號碼為795.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.海南省椰樹集團(tuán)引進(jìn)德國凈水設(shè)備的使用年限(年)和所需要的維修費(fèi)用y(千元)的幾組統(tǒng)計(jì)數(shù)據(jù)如表:
x23456
y2.23.85.56.57.0
(Ⅰ)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出$\widehaty$關(guān)于x的線性回歸方程$\widehaty$=$\hat b$x+$\hat a$;
(Ⅱ)我們把中(Ⅰ)的線性回歸方程記作模型一,觀察散點(diǎn)圖發(fā)現(xiàn)該組數(shù)據(jù)也可以用函數(shù)模型$\widehaty$=c1ln(c2x)擬合,記作模型二.經(jīng)計(jì)算模型二的相關(guān)指數(shù)R2=0.64,
①請說明R2=0.64這一數(shù)據(jù)在線性回歸模型中的實(shí)際意義.
②計(jì)算模型一中的R2的值(精確到0.01),通過數(shù)據(jù)說明,兩種模型中哪種模型的擬合效果好.
參考公式和數(shù)值:用最小工乘法求線性回歸方程系數(shù)公式$\widehatb$=$\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{{x_i}^2-n{{\overline x}^2}}}}$,$\widehata$=$\overline y$-$\widehatb\overline x$.R2=1-$\frac{{\sum_{i=1}^n{{{({y_i}-{{\widehaty}_i})}^2}}}}{{\sum_{i=1}^n{{{({y_i}-\overline y)}^2}}}}$,$\sum_{i=1}^n{{{({y_i}-{{\widehaty}_i})}^2}}$=0.651,(2×2.2+3×3.8+4×5.5+5×6.5+6×7.0=112.3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,在Rt△AOB中,∠OAB=$\frac{π}{6}$,斜邊AB=4,Rt△AOC通過Rt△AOB以直線AO為軸旋轉(zhuǎn)得到,且二面角B-AO-C是直二面角.動(dòng)點(diǎn)D在斜邊AB上.
(Ⅰ)求證:平面COD⊥平面AOB;
(Ⅱ)當(dāng)D為AB的中點(diǎn)時(shí),求異面直線AO與CD所成角的正切值;
(Ⅲ)求CD與平面AOB所成角最大時(shí)該角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.若A,B互為對立事件,其概率分別為P(A)=$\frac{1}{y}$,P(B)=$\frac{4}{x}$,且x>0,y>0,則x+y的最小值為9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.若數(shù)列{an}的前n項(xiàng)之積等于n2+3n+2,(n∈N+),則數(shù)列{an}的通項(xiàng)公式為an=$\left\{\begin{array}{l}{6,n=1}\\{\frac{n+2}{n},n≥2}\end{array}\right.$.n∈N*

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知函數(shù)y=f(x)(x∈R)的圖象如圖所示,f′(x)是f(x)的導(dǎo)函數(shù),則不等式(x-1)f′(x)<0的解集為( 。
A.(-∞,$\frac{1}{2}$)∪(1,2)B.(-1,1)∪(1,3)C.(-1,$\frac{1}{2}$)∪(3,+∞)D.(-∞,-1)∪(3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.求由曲線y=x+1與x=1,x=3,y=0所圍的圖形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若log2x+log2y=2,則$\frac{1}{x}$+$\frac{2}{y}$的最小值為( 。
A.1B.$\sqrt{2}$C.2D.4

查看答案和解析>>

同步練習(xí)冊答案