分析 把已知等式變形,得到cosx=$\frac{4-3y}{y+1}$,然后利用余弦函數(shù)的有界性轉(zhuǎn)化為含有y的絕對值不等式求解.
解答 解:由$y=\frac{4-cosx}{cosx+3}$,得ycosx+3y=4-cosx,即(y+1)cosx=4-3y,
∴cosx=$\frac{4-3y}{y+1}$,
由|cosx|≤1,得$|\frac{4-3y}{y+1}|≤1$,
即(4-3y)2≤(y+1)2,整理得:8y2-26y+15≤0.
解得:$\frac{3}{4}≤y≤\frac{5}{2}$.
∴函數(shù)$y=\frac{4-cosx}{cosx+3}$的值域為[$\frac{3}{4},\frac{5}{2}$].
故答案為:[$\frac{3}{4},\frac{5}{2}$].
點評 本題考查與三角函數(shù)有關(guān)的函數(shù)值域的求法,考查了三角函數(shù)的有界性,訓(xùn)練了絕對值不等式的解法,是中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ①③ | B. | ②③ | C. | ③④ | D. | ①④ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ①和② | B. | ②和③ | C. | ②和④ | D. | ③和④ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com