14.已知f(x)=x2+3x+1,g(x)=$\frac{a-1}{x-1}$+x,若h(x)=f(x)-g(x)恰有兩個零點,則實數(shù)a的取值為( 。
A.1B.$-\frac{5}{27}$C.1或$-\frac{5}{27}$D.$[{-\frac{5}{27},1}]$

分析 問題轉化為a=x3+x2-x(x≠1)的交點問題,令h(x)=x3+x2-x,(x≠1),畫出函數(shù)h(x)的圖象,結合圖象求出a的值即可.

解答 解:聯(lián)立y=f(x)和y=g(x)得 x2+3x+1=$\frac{a-1}{x-1}$+x,
整理可得 a=x3+x2-x,且 x≠1.
令函數(shù)h(x)=x3+x2-x,可得函數(shù)h(x) 的極值點在-1和$\frac{1}{3}$處,
畫出h(x)的草圖,如圖示:

當x=-1時,h(x)=1;  當x=$\frac{1}{3}$時,h(x)=-$\frac{5}{27}$,
故當a=1時,y=a和y=h(x)1個交點,
因為(1,1)不在h(x)上,不滿足條件.
故當a=-$\frac{5}{27}$時,結合圖象可得y=a和y=h(x)恰有2個交點.
綜上,只有當a=-$\frac{5}{27}$時,才能滿足y=a和y=h(x)恰有2個j交點,
故選:B.

點評 本題考查了函數(shù)的交點問題,考查數(shù)形結合思想以及轉化思想,是一道中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

4.xy=0的一個充分不必要條件是( 。
A.x=0且y=0B.x=0或y=0C.x≠0且y≠0D.x≠0或y≠0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知實數(shù)x,y滿足$\left\{\begin{array}{l}{x-y+2≥0}\\{x+y≥0}\\{x≤1}\end{array}\right.$.
(1)求出不等式組所表示的平面區(qū)域的面積;
(2)求目標函數(shù)z=2x+4y的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知定義在(0,$\frac{π}{2}}$)上的函數(shù)f(x),f'(x)為其導數(shù),且cosx•f(x)<f'(x)•sinx恒成立,則( 。
A.$\sqrt{3}$f($\frac{π}{4}$)>$\sqrt{2}$f($\frac{π}{3}$)B.$\sqrt{2}$f($\frac{π}{6}$)>f($\frac{π}{4}$)C.$\sqrt{3}$f($\frac{π}{6}$)<f($\frac{π}{3}$)D.f(1)<2($\frac{π}{6}$)sin1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.設全集U=R,集合A=x|y=$\frac{1}{\sqrt{a-x}}$},B=x|x2-x-6=0}.
(1)若a=-1,求A∩B;
(2)若(∁UA)∩B=∅,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.若log2(a+4b)=log2a+log2b,則a•b的最小值是( 。
A.16B.8C.4D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.集合A={x∈N|$\frac{6}{6-x}$∈N}用列舉法表示為{0,3,4,5}.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知a,b,c∈R,下列命題正確的是( 。
A.a>b⇒a2>b2B.a>b⇒2a>2b
C.a<b⇒$\frac{1}{a}$>$\frac{1}$D.1<a<b⇒loga2<logb2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知函數(shù)$f(x)=\frac{{\sqrt{2}}}{2}sin({2x+\frac{π}{4}})+2$,試求:
(1)函數(shù)f(x)的最小正周期及x為何值時f(x)有最大值;
(2)函數(shù)f(x)的單調(diào)遞增區(qū)間;
(3)若方程f(x)-m+1=0在$x∈[{0,\frac{π}{2}}]$上有解,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習冊答案