分析 設B(x1,y1),C(x2,y2),由于|OA|=|OB|,可得x12+y12=x22+y22.代入化簡可得:x1=x2.由拋物線對稱性,知點B、C關于x軸對稱.不妨設直線OB的方程為:y=$\frac{\sqrt{3}}{3}$x,與拋物線方程聯(lián)立解出即可得出.
解答 解:設B(x1,y1),C(x2,y2),
∵|OA|=|OB|,∴x12+y12=x22+y22.
又∵y12=2px1,y22=2px2,
∴x22-x12+2p(x2-x1)=0,
即(x2-x1)(x1+x2+2p)=0.
又∵x1、x2與p同號,∴x1+x2+2p≠0.
∴x2-x1=0,即x1=x2.
由拋物線對稱性,知點B、C關于x軸對稱.
不妨設直線OB的方程為:y=$\frac{\sqrt{3}}{3}$x,
聯(lián)立$\left\{\begin{array}{l}{y=\frac{\sqrt{3}}{3}x}\\{{y}^{2}=2px}\end{array}\right.$,解得B$(6p,2\sqrt{3}p)$.
∴△OBC的周長=$6×2\sqrt{3}p$=12$\sqrt{3}$p.
故答案為:12$\sqrt{3}$p.
點評 本題考查了拋物線的標準方程及其性質、直線與拋物線相交問題、等邊三角形的性質,考查了推理能力與計算能力,屬于基礎題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2π | B. | 4π | C. | 6π | D. | 5π |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-∞,-1]∪[2,+∞) | B. | (-1,2) | C. | (-∞,-1]∪[-$\frac{1}{2}$,+∞) | D. | (-1,-$\frac{1}{2}$) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com