1.在平面直角坐標系xOy中,若直線ax+y-2=0與圓心為C的圓(x-1)2+(y-a)2=16相交于A,B兩點,且△ABC為直角三角形,則實數(shù)a的值是-1.

分析 由題意可得△ABC是等腰直角三角形,可得圓心C(1,a)到直線ax+y-2=0的距離等于r•sin45°,再利用點到直線的距離公式求得a的值.

解答 解:由題意可得△ABC是等腰直角三角形,∴圓心C(1,a)到直線ax+y-2=0的距離等于r•sin45°=$\frac{\sqrt{2}}{2}$×4=2$\sqrt{2}$,
再利用點到直線的距離公式可得$\frac{|2a-2|}{\sqrt{{a}^{2}+1}}$=2$\sqrt{2}$,
∴a=-1,
故答案為:-1.

點評 本題主要考查直線和圓的位置關(guān)系,直角三角形中的邊角關(guān)系,點到直線的距離公式的應(yīng)用,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知函數(shù)f(x)=sin(x+θ)是奇函數(shù),則滿足條件的所有θ組成的集合為{θ|θ=kπ,k∈Z}..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知直線l經(jīng)過點A(-2,0)與點B(-5,3),則該直線的傾斜角為( 。
A.150°B.135°C.60°D.45°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知函數(shù)f(x)=2sin(ωx+φ)(ω>0,0<φ<$\frac{π}{2}$)與y軸的交點為(0,1),且圖象上兩對稱軸之間的最小距離為$\frac{π}{2}$,則使f(x+t)-f(-x+t)=0成立的|t|的最小值為( 。
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{π}{2}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.設(shè)橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的離心率e=$\frac{1}{2}$,圓x2+y2=$\frac{12}{7}$與直線$\frac{x}{a}$+$\frac{y}$=1相切,O為坐標原點.
(1)求橢圓C的方程;
(2)過點Q(-4,0)任作一直線l交橢圓C于M,N兩點,記$\overrightarrow{MQ}$=λ$\overrightarrow{QN}$,若在線段MN上取一點R,使得$\overrightarrow{MR}$=-λ$\overrightarrow{RN}$,試判斷當直線l運動時,點R是否在某一定直一上運動?若是,請求出該定直線的方程;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.設(shè)冪函數(shù)f(x)=kxa的圖象經(jīng)過點(4,2),則k+a=$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.有下列4個說法
①集合A={x|x2-3x-10≤0},B={x|a+1≤x≤2a-1},若B⊆A,則-3≤a≤3;
②方程sinx=x的解的個數(shù)為3個;
③函數(shù)y=f(2-x)與函數(shù)y=f(x-2)的圖象關(guān)于直線x=2對稱;
④a∈($\frac{1}{4}$,+∞)時,函數(shù)y=lg(x2+x+a)的值域為R;
其中正確的題號為③.(寫出所有正確說法的題號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.設(shè)數(shù)列{an}的前n項和為Sn,已知${a_1}+2{a_2}+3{a_3}+…+n{a_n}=(n-1){S_n}+2n(n∈{N^*})$.
(1)求證:數(shù)列{Sn+2}是等比數(shù)列;
(2)設(shè)${b_n}=\frac{8n-14}{{{S_n}+2}}$,數(shù)列{bn}的前n項和為Tn,求證:Tn<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.設(shè)$\overrightarrow{a}$,$\overrightarrow$是兩個非零向量,則下列命題為真命題的是
①若$\overrightarrow{a}$與$\overrightarrow$的夾角為60°,則|$\overrightarrow{a}$|=|$\overrightarrow$|=|$\overrightarrow{a}$-$\overrightarrow$|;
②若|$\overrightarrow{a}$|=|$\overrightarrow$|=|$\overrightarrow{a}$-$\overrightarrow$|,則$\overrightarrow{a}$與$\overrightarrow{a}$+$\overrightarrow$的夾角60°;
③若|$\overrightarrow{a}$+$\overrightarrow$|=|$\overrightarrow{a}$|-|$\overrightarrow$|,則存在非零實數(shù)λ,使得$\overrightarrow$=λ$\overrightarrow{a}$;
④若存在非零實數(shù)λ,使得$\overrightarrow$=λ$\overrightarrow{a}$,則|$\overrightarrow{a}$+$\overrightarrow$|=|$\overrightarrow{a}$|-|$\overrightarrow$;
⑤若$\overrightarrow{a}$與$\overrightarrow$共線且同向,則|$\overrightarrow{a}$•$\overrightarrow$|=|$\overrightarrow{a}$||$\overrightarrow$|.
其中的正確的結(jié)論是③⑤(寫出所有正確結(jié)論的序號).

查看答案和解析>>

同步練習冊答案