10.已知函數(shù)f(x)=sin2x-$\sqrt{3}$cos2x.
(1)求f(x)的單調(diào)遞增區(qū)間;
(2)當(dāng)x∈[$\frac{π}{6}$,$\frac{π}{2}$]時,求f(x)的值域.

分析 (1)先利用兩角和差的正弦公式化簡,以及根據(jù)正弦函數(shù)的性質(zhì)即可求出單調(diào)區(qū)間;
(2)先判斷[$\frac{π}{6}$,$\frac{π}{2}$]的單調(diào)性,再代值計算即可.

解答 解:(1)f(x)=sin2x-$\sqrt{3}$cos2x=2($\frac{1}{2}$sin2x-$\frac{\sqrt{3}}{2}$cos2x)=2sin(2x-$\frac{π}{3}$),
∴2kπ-$\frac{π}{2}$≤2x-$\frac{π}{3}$≤2kπ+$\frac{π}{2}$,k∈Z,
即kπ-$\frac{π}{12}$≤x≤kπ+$\frac{5π}{12}$,k∈Z,
∴函數(shù)的遞增區(qū)間為[kπ-$\frac{π}{12}$,kπ+$\frac{5π}{12}$],k∈Z,
(2)由(1)可知,函數(shù)f(x)在[$\frac{π}{6}$,$\frac{5π}{12}$]上單調(diào)遞增,在($\frac{5π}{12}$,$\frac{π}{2}$]上單調(diào)遞減,
∴f(x)max=f($\frac{5π}{12}$)=2,f(x)min=f($\frac{π}{6}$)=0,
∴f(x)的值域的值域為[0,2]

點評 本題主要考查正弦函數(shù)的兩角和公式的運用以及正弦函數(shù)的性質(zhì),屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,在海濱某城市附近海面有一臺風(fēng),據(jù)監(jiān)測,臺風(fēng)中心位于城市A的南偏東15°方向、距城市120$\sqrt{3}$km的海面P處,并以20km/h的速度向北偏西45°方向移動,如果臺風(fēng)侵襲的范圍為圓型區(qū)域,半徑為120km,幾小時后該城市開始受到臺風(fēng)的侵襲?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.若x,y滿足約束條件$\left\{\begin{array}{l}x-1≥0\\ x-y≤0\\ x+y-4≤0\end{array}\right.$,則$\frac{y}{x+1}$的最大值為$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知奇函數(shù)f(x)的定義域為R,且f(1-x)=f(1+x),當(dāng)-2<x≤-1時,f(x)=-log${\;}_{\frac{1}{2}}}$(2+x),則函數(shù)y=2f(x)-1在(0,8)內(nèi)的所有零點之和為12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知隨機(jī)變量X服從正態(tài)分布N(1,σ2),且P(X≤0)=0.1,則P(1≤X≤2)=0.4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.設(shè)A={m-5,-5},B={2m-1,m-1},若A∩B={-5},則實數(shù)m的值為-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.函數(shù)y=3${\;}^{-{x}^{2}}$的值域是(0,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.邊長為1的正方形ABCD中,E為BC的中點,則$\overrightarrow{AE}•\overrightarrow{BD}$=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知f(x)=ln(x+1),$g(x)=\frac{1}{2}a{x^2}+bx$$(注:ln{(x+1)^'}=\frac{1}{x+1})$
(1)若a=0,b=1時,求證:f(x)-g(x)≤0對于x∈(-1,+∞)恒成立;
(2)若b=2,且h(x)=f(x-1)-g(x)存在單調(diào)遞減區(qū)間,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案