5.若函數(shù)f(x)=kx-lnx 在區(qū)間[2,5]上單調(diào)遞增,則實(shí)數(shù)k的取值范圍是[$\frac{1}{2}$,+∞).

分析 f′(x)=k-$\frac{1}{x}$,由于函數(shù)f(x)=kx-lnx在區(qū)間[2,5]單調(diào)遞增,可得f′(x)≥0在區(qū)間[2,5]上恒成立.解出即可.

解答 解:f′(x)=k-$\frac{1}{x}$,
∵函數(shù)f(x)=kx-lnx在區(qū)間[2,5]單調(diào)遞增,
∴f′(x)≥0在區(qū)間[2,5]上恒成立,
∴k≥$\frac{1}{x}$,
而y=$\frac{1}{x}$在區(qū)間[2,5]上單調(diào)遞減,
∴k≥$\frac{1}{2}$,
∴k的取值范圍是[$\frac{1}{2}$,+∞),
故答案為:[$\frac{1}{2}$,+∞).

點(diǎn)評(píng) 本題考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、恒成立問題的等價(jià)轉(zhuǎn)化方法,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知函數(shù)f(x)=$\left\{\begin{array}{l}{4|lo{g}_{2}x|,0<x<2}\\{\frac{1}{2}{x}^{2}-5x+12,x≥2}\end{array}\right.$,若存在實(shí)數(shù)a,b,c,d滿足f(a)=f(b)=f(c)=f(d),其中d>c>b>a>0,則a+b+c+d的取值范圍是( 。
A.(12,$\frac{25}{2}$)B.(16,24)C.(12,+∞)D.(18,24)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知命題p:“?x>0,sinx≥1”,則¬p為( 。
A.?x>0,sinx≥1B.?x≤0,sinx<1C.?x>0,sinx<1D.?x≤0,sin≥1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若角α的終邊經(jīng)過點(diǎn)(-3λ,4λ),且λ≠0,則$\frac{sinα+cosα}{sinα-cosα}$等于(  )
A.$-\frac{1}{7}$B.$\frac{1}{7}$C.-7D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知A,B,C是△ABC的三個(gè)內(nèi)角,設(shè)f(B)=4sinB•cos2($\frac{π}{4}$-$\frac{B}{2}$)+cos2B,若f(B)-m<2恒成立,則實(shí)數(shù)m的取值范圍是( 。
A.m<1B.m>-3C.m<3D.m>1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.鈍角△ABC的三邊長(zhǎng)a=k,b=k+2,c=k+4,則實(shí)數(shù)k的取值范圍為( 。
A.k>2B.k>6C.2<k<6D.2≤k≤6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知數(shù)列{an}是等差數(shù)列,且a3+a9=4,那么數(shù)列{an}的前11項(xiàng)和等于22.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.某幾何體的三視圖如圖所示,正視圖與俯視圖完全相同,則該幾何體的體積為( 。
A.$\frac{56π}{3}$B.$\frac{192-8π}{3}$C.$\frac{64-8π}{3}$D.16+16$\sqrt{5}$+4($\sqrt{2}$-1)π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知|$\overrightarrow{a}$|=4,|$\overrightarrow$|=5,|$\overrightarrow{a}$+$\overrightarrow$|=$\sqrt{21}$,則$\overrightarrow{a}$•$\overrightarrow$=( 。
A.-10B.-8C.10D.8

查看答案和解析>>

同步練習(xí)冊(cè)答案