11.已知直線的方程是$\sqrt{3}x-y+1=0$,則直線的傾斜角是( 。
A.120°B.150°C.30°D.60°

分析 根據(jù)題意,設直線的傾斜角為θ,結合直線的方程可得其斜率k=$\sqrt{3}$,由直線的斜率為傾斜角的關系可得tanθ=$\sqrt{3}$,解可得θ的值,即可得答案.

解答 解:根據(jù)題意,設直線的傾斜角為θ,(0°≤θ<180°)
直線的方程是$\sqrt{3}x-y+1=0$,變形可得y=$\sqrt{3}$x+1,
其斜率k=$\sqrt{3}$,
則有tanθ=$\sqrt{3}$,
直線的傾斜角θ=60°;
故選:D.

點評 本題考查直線的傾斜角計算,注意要先求出直線的斜率.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

1.如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,∠DAB為直角,AB∥CD,AD=CD=2AB=2,E,F(xiàn)分別為PC,CD的中點.
(Ⅰ)證明:AB⊥平面BEF;
(Ⅱ)若PA=$\frac{2\sqrt{5}}{5}$,求二面角E-BD-C.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.如圖,在四棱錐P-ABCD中,PD⊥平面ABCD,底面ABCD是平行四邊形,$∠BAD={60°},AB=2,PD=\sqrt{3},AD=BD$,O為AC與BD的交點,E為棱PB上一點.
(1)證明:平面EAC⊥平面PBD;
(2)若PE=2EB,求二面角E-AC-B的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知變量x,y滿足約束條件$\left\{\begin{array}{l}{x-4y+3≥0}\\{x+y≥0}\\{x≥1}\end{array}\right.$,目標函數(shù)z=2x+y,則( 。
A.z的最小值為3,z無最大值B.z的最小值為1,最大值為3
C.z的最小值為3,z無最小值D.z的最小值為1,z無最大值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知圓F的圓心坐標為(1,0),且被直線x+y-2=0截得的弦長為$\sqrt{2}$.
(1)求圓F的方程;
(2)若動圓M與圓F相外切,又與y軸相切,求動圓圓心M的軌跡方程;
(3)直線l與圓心M軌跡位于y軸右側的部分相交于A、B兩點,且$\overrightarrow{OA}$•$\overrightarrow{OB}$=-4,證明直線l必過一定點,并求出該定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$與拋物線y2=4x的交點為A,B,且直線AB過雙曲線與拋物線的公共焦點F,則雙曲線的實軸長為( 。
A.$\sqrt{2}$+1B.$\sqrt{3}$C.$\sqrt{2}$-1D.2$\sqrt{2}$-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.某品牌手機廠商推出新款的旗艦機型,并在某地區(qū)跟蹤調(diào)查得到這款手機上市時間(x個周)和市場占有率(y%)的幾組相關數(shù)據(jù)如表:
x12345
y0.030.060.10.140.17
(Ⅰ)根據(jù)表中的數(shù)據(jù),用最小二乘法求出y關于x的線性回歸方程$\widehat{y}=\widehatx+\widehat{a}$;
(Ⅱ)根據(jù)上述線性回歸方程,分析該款旗艦機型市場占有率的變化趨勢,并預測自上市起經(jīng)過多少個周,該款旗艦機型市場占有率能超過0.40%(最后結果精確到整數(shù)).
參考公式:$\widehat=\frac{{{\sum_{i=1}^{n}x}_{i}y}_{y}-n\overline{x}\overline{y}}{{\sum_{i=1}^{n}x}_{i}^{2}-{n\overline{x}}^{2}}$,$\hat a=\bar y-\hat b\bar x$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知函數(shù)$f(x)=Asin(wx+φ)+B(A>0,w>0,|φ|<\frac{π}{2})$的 部分圖象如圖所示:
(1)求f(x)的解析式;
(2)求f(x)的單調(diào)區(qū)間和對稱中心坐標;
(3)將f(x)的圖象向左平移$\frac{π}{6}$個單位,在將橫坐標伸長到原來的2倍,縱坐標不變,最后將圖象向上平移1個單位,得到函數(shù)g(x)的圖象,求函數(shù)y=g(x)在$x∈[0,\frac{7π}{6}]$上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.如圖,四邊形ABCD為菱形,四邊形ACEF為平行四邊形,設BD與AC相交于點G,AB=BD=2,AE=$\sqrt{3}$,∠EAD=∠EAB.
(1)證明:平面ACEF⊥平面ABCD;
(2)若AE與平面ABCD所成角為60°,求二面角B-EF-D的余弦值.

查看答案和解析>>

同步練習冊答案