3.方程cos2x=cosx在[0,2π]內(nèi)的解集為{0,2π,$\frac{2π}{3}$,$\frac{4π}{3}$}.

分析 由二倍角公式變形已知方程可得cosx=1或cosx=-$\frac{1}{2}$,結(jié)合余弦函數(shù)圖象可得.

解答 解:方程cos2x=cosx可化為2cos2x-cosx-1=0,
分解因式可得(cosx-1)(2cosx+1)=0,
解得cosx=1或cosx=-$\frac{1}{2}$,
∴在[0,2π]內(nèi)x=0,或x=2π或x=$\frac{2π}{3}$或x=$\frac{4π}{3}$
故答案為:{0,2π,$\frac{2π}{3}$,$\frac{4π}{3}$}

點評 本題考查二倍角的余弦公式,涉及一元二次方程的解法和三角函數(shù)圖象,屬基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.在三棱錐S-ABC中,底面△ABC的每個頂點處的三條棱兩兩所成的角之和均為180°,△ABC的三條邊長分別為AB=$\sqrt{3}$,AC=$\sqrt{5}$,BC=$\sqrt{6}$,則三棱錐S-ABC的體積( 。
A.2$\sqrt{2}$B.$\sqrt{10}$C.$\frac{2\sqrt{2}}{3}$D.$\frac{4\sqrt{2}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.若橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{1}{2}$,則雙曲線$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{^{2}}$=1的漸近線方程y=±$\frac{2\sqrt{3}}{3}$x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.利用公式計算:$\frac{{A}_{n-1}^{m-1}•{A}_{n-m}^{n-m}}{{A}_{n-1}^{n-1}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.函數(shù)f(x)=$\frac{ax}{ax+1}$,a≠0,a為常數(shù),方程f(x)=x有唯一實數(shù)解
(1)求f(x)
(2)x1=2,xn+1=f(xn),n∈N*,求證:數(shù)列{$\frac{1}{{x}_{n}}$}為等差數(shù)列,并求xn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.試判斷命題“設(shè)a,x∈R,若關(guān)于x的不等式x2+(2a+1)x+a2+2≤0有實數(shù)解,則a≥1”的逆否命題的真假.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.在平面直角坐標系xOy中,已知四邊形ABCD是平行四邊形,$\overrightarrow{AB}$=(3,1),$\overrightarrow{AD}$=(2,-2),則$\overrightarrow{AC}•\overrightarrow{BD}$( 。
A.2B.-2C.-10D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在△ABC中,角A,B,C對應(yīng)的邊長分別為a,b,c,且a=4,b=3,sin(A+C)=$\frac{3}{5}$.
(1)求sinA的值;
(2)求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.在三棱臺ABC-A1B1C1中,A1B1=2AB,點E、F分別是棱B1C1、A1B1的中點,則在三棱臺的各棱所在的直線中,與平面ACEF平行的有A1C1、BB1

查看答案和解析>>

同步練習冊答案