2.已知α,β是兩個不同的平面,m,n是兩條不重合的直線,則下列命題中正確的是(  )
A.若m∥α,α∩β=n,則m∥nB.若l?α,m?α,l∥β,m∥β,則α∥β
C.若m⊥α,m⊥n,則n∥αD.若m⊥α,n⊥β,α⊥β,則m⊥n

分析 在A中,m與n平行或異面;在B中,α與β相交或平行;在C中,n∥α或n?α;在D中,由直線與平面垂直的性質(zhì)定理及平面與平面垂直的判定定理得m⊥n.

解答 解:由α,β是兩個不同的平面,m,n是兩條不重合的直線,知:
在A中,若m∥α,α∩β=n,則m與n平行或異面,故A錯誤;
在B中,若l?α,m?α,l∥β,m∥β,則α與β相交或平行,故B錯誤;
在C中,若m⊥α,m⊥n,則n∥α或n?α,故C錯誤;
在D中,若m⊥α,n⊥β,α⊥β,
則由直線與平面垂直的性質(zhì)定理及平面與平面垂直的判定定理得m⊥n,故D正確.
故選:D.

點評 本題考查命題真假的判斷,是基礎(chǔ)題,解題時要認(rèn)真審題,注意空間中線線、線面、面面間的位置關(guān)系的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.己知函數(shù)f(x)=$\sqrt{3}sinxcosx+{sin^2}x+\frac{1}{2}$(x∈R).
(1)求函數(shù)f(x)的最小正周期和單調(diào)遞增區(qū)間;
(2)當(dāng)$x∈[-\frac{π}{12},\frac{5π}{12}]$時,求函數(shù)f(x)的最小值和最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.根據(jù)下列條件求直線的方程.
(1)與直線2x+3y-1=0平行且在與兩坐標(biāo)軸圍成的面積為3.
(2)過點(-1,3)且與兩點A(3,0),B(-1,2)距離相等.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.函數(shù)y=sin x,x∈[0,2π]的圖象與直線y=-$\frac{1}{2}$的交點有( 。
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.對于命題:
①若a,b∈R,ab=0是|a|+|b|=|a+b|成立的充要條件;
②“若x>y,則xc2>yc2”的逆命題是真命題;
③已知x,y∈R,“若xy=0,則x=0或y=0”的逆否命題是“若x≠0或y≠0,則xy≠0”;
④“若x∉A∩B,則x∉A∪B”的逆命題.
其中真命題的個數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.設(shè)數(shù)列{an}的前n項和Sn滿足Sn=$\frac{1}{2}$×3n+1-$\frac{3}{2}$,數(shù)列{bn}滿足bn=$\frac{2}{(n+1)lo{g}_{3}{a}_{n}}$.
(1)求數(shù)列{an}的通項公式;
(2)求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.定義全集U的子集A的特征函數(shù)為fA(x)=$\left\{{\begin{array}{l}{1}\\{0}\end{array}}\right.\begin{array}{l}{,x∈A}\\{,x∈{∁_U}A}\end{array}$,這里∁UA表示集合A在全集U中的補集.已知A⊆U,B⊆U,給出以下結(jié)論:
①若A⊆B,則對于任意x∈U,都有fA(x)≤fB(x);
②對于任意x∈U,都有${f_{{∁_U}A}}$(x)=1-fA(x);
③對于任意x∈U,都有fA∩B(x)=fA(x)•fB(x);
④對于任意x∈U,都有fA∪B(x)=fA(x)+fB(x).
其中正確的結(jié)論有①②③.(寫出全部正確結(jié)論的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.設(shè)f(x)=$\left\{\begin{array}{l}{{a}^{x},x≤1}\\{{x}^{2}-a,x>1}\end{array}\right.$且f(2$\sqrt{2}$)=3,則a=5;f(f(2))=$\frac{1}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知數(shù)列{an}的前n項和Sn=1-5+9-13+17-21+…+(-1)n-1(4n-3),則S10=(  )
A.-20B.-21C.20D.21

查看答案和解析>>

同步練習(xí)冊答案