9.命題p:?x∈R,x2+x≤1的否定¬p為(  )
A.$?{x_0}∈R,x_0^2+{x_0}≥1$B.?x∈R,x2+x≥1
C.$?{x_0}∈R,x_0^2+{x_0}>1$D.?x∈R,x2+x>1

分析 直接利用全稱命題的否定是特稱命題寫出結(jié)果即可.

解答 解:因?yàn)槿Q命題的否定是特稱命題,所以,命題p:?x∈R,x2+x≤1的否定¬p為:$?{x_0}∈R,x_0^2+{x_0}>1$.
故選:C.

點(diǎn)評(píng) 本題考查命題的否定,特稱命題與全稱命題的否定關(guān)系,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.若函數(shù)f(x)=x2-x+c,滿足|x-a|<1.
(Ⅰ)若x∈(-1,1),不等式|x-a|<1恒成立,求實(shí)數(shù)a的取值范圍構(gòu)成的集合;
(Ⅱ)求證:|f(x)-f(a)|<2|a|+2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.一個(gè)盒子里裝有標(biāo)號(hào)為1,2,…,10的標(biāo)簽,隨機(jī)地選取兩張標(biāo)簽,若標(biāo)簽的選取是無放回的,則兩張標(biāo)簽上數(shù)字為相鄰整數(shù)的概率為(  )
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{3}{5}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知函數(shù)f(x)=$\sqrt{4-x}$-$\sqrt{x-1}$,則其定義域?yàn)椋ā 。?table class="qanwser">A.[1,4]B.(-∞,4]C.[3,+∞)D.(-∞,1]∪[4,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.長(zhǎng)方體AC1的長(zhǎng)、寬、高分別為3、2、1,求從A到C1沿長(zhǎng)方體的表面的最短距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.某汽車公司為了考查某4S店的服務(wù)態(tài)度,對(duì)到店維修保養(yǎng)的客戶進(jìn)行回訪調(diào)查,每個(gè)用戶在到此店維修或保養(yǎng)后可以對(duì)該店進(jìn)行打分,最高分為10分.上個(gè)月公司對(duì)該4S店的100位到店維修保養(yǎng)的客戶進(jìn)行了調(diào)查,將打分的客戶按所打分值分成以下幾組:
第一組[0,2),第二組[2,4),第三組[4,6),第四組[6,8),第五組[8,10],得到頻率分布直方圖如圖所示.
(I)求所打分值在[6,10]的客戶的人數(shù):
(II)該公司在第二、三組客戶中按分層抽樣的方法抽取6名客戶進(jìn)行深入調(diào)查,之后將從這6人中隨機(jī)抽取2人進(jìn)行物質(zhì)獎(jiǎng)勵(lì),求得到獎(jiǎng)勵(lì)的人來自不同組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知函數(shù)f(x)=5x+sinx(x∈R),且f(x2-4x)+f(y2+3)≤0,則當(dāng)y>0時(shí),$\frac{y}{x}$+$\frac{x}{y}$的取值范圍是(  )
A.$({0,\frac{{4\sqrt{3}}}{3}}]$B.$[{2,\frac{{4\sqrt{3}}}{3}}]$C.$[{\frac{{4\sqrt{3}}}{3},+∞})$D.[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知i是虛數(shù)單位,計(jì)算i+i2+i3+…+i2015=(  )
A.-iB.-1-iC.1D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,已知AB是圓O的直徑,直線CD與圓O相切于點(diǎn)C,AC平分∠DAB,AD與圓O相交于點(diǎn)E
(1)求證:AD⊥CD
(2)若AE=3,CD=2,求OC的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案