分析 (1)解$\frac{a+2}{a-6}=2$即可求出a的值,x=3帶入f(x)解析式即可求出f(3);
(2)f(x)中的x換上x+6即可求出f(x+6),即得出g(x)=1+$\frac{8}{x}$,(x≠0);
(3)根據(jù)反比例函數(shù)$y=\frac{8}{x}$的單調(diào)性即可判斷出g(x)在[1,4]上單調(diào)遞減,從而便可得出其值域.
解答 解:(1)由題意,$\frac{a+2}{a-6}=2$,解得,a=14;
$f(3)=\frac{3+2}{3-6}=-\frac{5}{3}$;
(2)$g(x)=f(x+6)=\frac{x+6+2}{x+6-6}=\frac{x+8}{x}=1+\frac{8}{x}$,(x≠0);
∴$g(x)=1+\frac{8}{x}(x≠0)$;
(3)g(x)在[1,4]上單調(diào)遞減,且g(1)=9,g(4)=3;
∴g(x)的值域?yàn)閇3,9].
點(diǎn)評(píng) 考查已知函數(shù)值求自變量值的方法,已知函數(shù)求值的方法,已知f(x)求f[g(x)]的方法,以及反比例函數(shù)的單調(diào)性,根據(jù)單調(diào)性求函數(shù)在閉區(qū)間上值域的方法.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{2}{3}$ | B. | 1 | C. | $\frac{{4\sqrt{3}}}{3}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | “x<0”是“l(fā)n(x+1)<0”的充要條件 | |
B. | “?x≥2,x2-3x+2≥0”的否定是“?x<2,x2-3x+2<0” | |
C. | 采用系統(tǒng)抽樣法從某班按學(xué)號(hào)抽取5名同學(xué)參加活動(dòng),學(xué)號(hào)為5,17,29,41,53的同學(xué)均被選出,則該班學(xué)生人數(shù)可能為65 | |
D. | 在含有M件次品的N件產(chǎn)品中,任取n件,其中恰有X件次品,則隨機(jī)變量X的期望$E(X)=\frac{Mn}{N}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a3>b3 | B. | a2<a3 | C. | a3<b3 | D. | b2>b3 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com