討論函數(shù)y=loga(x2-2x-3)的單調(diào)性.
考點(diǎn):復(fù)合函數(shù)的單調(diào)性
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:求解函數(shù)的定義域?yàn)椋海?∞,-1)∪(3,+∞)
判斷t(x)=x2-2x-3在(-∞,-1)上單調(diào)遞減,在(3,+∞)上單調(diào)遞增,
根據(jù)復(fù)合函數(shù)的單調(diào)性的判斷即可.
解答: 解:∵函數(shù)y=loga(x2-2x-3),
x2-2x-3>0,
x>3或x<-1,
∴函數(shù)的定義域?yàn)椋海?∞,-1)∪(3,+∞)
∴t(x)=x2-2x-3在(-∞,-1)上單調(diào)遞減,在(3,+∞)上單調(diào)遞增,
∴當(dāng)a>1,函數(shù)y=loga(x2-2x-3)在(-∞,-1)上單調(diào)遞減,在(3,+∞)上單調(diào)遞增,
當(dāng)0<a<1,函數(shù)y=loga(x2-2x-3)在(-∞,-1)上單調(diào)遞增,在(3,+∞)上單調(diào)遞減.
點(diǎn)評(píng):本題考查了函數(shù)的定義域,復(fù)合函數(shù)的單調(diào)性的判斷,此題關(guān)鍵是容易忽略的定義域的限制.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)隨機(jī)變量x~n(5,4),φ(1)=0.8413,則P(3<X<7)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列結(jié)論中,正確的是( 。
①汽車的重量和汽車每消耗1升汽油所行駛的平均路程成正相關(guān)關(guān)系; ②散點(diǎn)圖能直觀地反映數(shù)據(jù)的相關(guān)程度;  ③在統(tǒng)計(jì)中,眾數(shù)不一定是數(shù)據(jù)組中數(shù)據(jù); ④在統(tǒng)計(jì)中,樣本的標(biāo)準(zhǔn)差越大說明這組數(shù)據(jù)的波動(dòng)越大; ⑤概率是隨機(jī)的,在試驗(yàn)前不能確定.
A、①③B、②⑤C、②④D、④⑤

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知關(guān)于x,y的方程
x2+y2-2x-16y+65
-m|x+2y-5|=0表示雙曲線時(shí),則m的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A.C是圓O:x2+y2=2上任意兩點(diǎn)點(diǎn)A關(guān)于x軸的對(duì)稱點(diǎn)為B,若直線AC,BC分別交x軸于點(diǎn)M(m,0)和N(n,0),則mn=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2的圖象如圖所示,且點(diǎn)A、B、C、D在圖象上,問函數(shù)f(x)=x2在哪點(diǎn)附近增長(zhǎng)最快( 。
A、A點(diǎn)B、B點(diǎn)C、C點(diǎn)D、D點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線y=x2-4x-5與x軸、y軸分別相交于A,B,C三點(diǎn).
(1)求三角形△ABC的外接圓M的方程;
(2)設(shè)點(diǎn)P為圓M上的一個(gè)動(dòng)點(diǎn),求|PA|2+|PB|2+|PC|2的最小值,并求此時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在某次籃球訓(xùn)練中,規(guī)定:在甲投籃點(diǎn)投進(jìn)一球得2分,在乙投籃點(diǎn)投進(jìn)一球得1分;得分超過2分即停止投籃,且每人最多投3次.某同學(xué)在甲投籃點(diǎn)命中率0.5,在乙投籃點(diǎn)命中率為p,該同學(xué)選擇在甲投籃點(diǎn)先投一球,以后都在乙投籃點(diǎn)投.用ξ表示該同學(xué)投籃訓(xùn)練結(jié)束后所得總分,其分布列如下:
ξ0123
p0.02p1p2p3
(Ⅰ)求p的值;
(Ⅱ)求該同學(xué)得分的數(shù)學(xué)期望;
(Ⅲ)試比較該同學(xué)選擇都在乙投籃點(diǎn)的分超過2分與選擇上述方式投籃得分超過2分的概率的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若f(x)=3x2+2
1
0
f(x)dx,則
1
0
f(x)dx=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案