4.由直線x=-$\frac{π}{6}$,x=$\frac{π}{6}$,y=0與直線y=cosx所圍成的封閉圖形的面積為(  )
A.$\frac{1}{2}$B.1C.$\frac{\sqrt{3}}{2}$D.$\sqrt{3}$

分析 畫出曲邊梯形,利用定積分表示面積,然后計算.

解答 解:如圖,由直線x=-$\frac{π}{6}$,x=$\frac{π}{6}$,y=0與直線y=cosx所圍成的封閉圖形的面積為${2∫}_{0}^{\frac{π}{6}}cosxdx$=2sinx|${\;}_{0}^{\frac{π}{6}}$=1;
故選:B.

點評 本題考查了利用定積分求曲邊梯形的面積;關(guān)鍵是正確表示面積,并正確計算.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若x∈[0,2π],且sinx=-$\frac{1}{2}$,則x=$\frac{11π}{6}$或$\frac{7π}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知($\frac{1}{2}$+2x)n的展開式中前3項的二項式系數(shù)之和等于37,求展開式中二項式系數(shù)最大的項.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知函數(shù)y=f(x)對任意實數(shù)x都有f(1+x)=f(1-x),且函數(shù)f(x)在[1,+∞)上為單調(diào)函數(shù).若數(shù)列{an}是公差不為0的等差數(shù)列,且f(a6)=f(a23),則{an}的前28項之和S28=( 。
A.7B.14C.28D.56

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.函數(shù)y=x3-3x-a有三個相異的零點,則a的取值范圍是( 。
A.[2,+∞)B.[-2,2]C.(-2,2)D.(-∞,-2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知數(shù)列{an},{bn}均為各項都不相等的數(shù)列,Sn為{an}的前n項和,an+1bn=Sn+1(n∈N).
(1)若a1=1,bn=$\frac{n}{2}$,求a4的值;
(2)若{an}是公比為q的等比數(shù)列,求證:存在實數(shù)λ,使得{bn+λ}為等比數(shù)列;
(3)若{an}的各項都不為零,{bn}是公差為d的等差數(shù)列,求證:a2,a3,…,an…成等差數(shù)列的充要條件是d=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知集合A={-1,0,1,2},B={x|x2-x-2≤0},則x∈A是x∈B的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=4x,若4,f(a1),f(a2),…,f(an),2n+3(n∈N*)構(gòu)成等比數(shù)列.
(I)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè) bn=$\left\{\begin{array}{l}\frac{1}{n},n為偶數(shù)\\ n+2,n為奇數(shù)\end{array}$求數(shù)列{$\frac{b_n}{a_n}}$}的前n項和為Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)a,b,l均為直線,α,β均為平面,則下列命題判斷錯誤的是(  )
A.若l∥α,則α內(nèi)存在無數(shù)條直線與l平行
B.若α⊥β,則α內(nèi)存在無數(shù)條直線與β不垂直
C.若α∥β,則α內(nèi)存在直線m,β內(nèi)存在直線,使得m⊥n
D.若a⊥l,b⊥l,則a與b不可能垂直

查看答案和解析>>

同步練習(xí)冊答案