20.已知等比數(shù)列{an}滿足a1+a2+a3=1,a4+a5+a6=8,則a2+a3+a4=2.

分析 設等比數(shù)列{an}的公比為q,從而可得a4+a5+a6=(a1+a2+a3)q3=q3=8,從而解得.

解答 解:設等比數(shù)列{an}的公比為q,則
a4+a5+a6=(a1+a2+a3)q3=q3=8,
故q=2,
故a2+a3+a4=(a1+a2+a3)q=q=2,
故答案為:2.

點評 本題考查了等比數(shù)列的性質(zhì)的判斷及整體思想的應用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

10.數(shù)列{an}中,an+1=$\frac{{2}^{n+1}•{a}_{n}}{{2}^{n+1}+{a}_{n}}$,a1=2,求an

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.圓錐的母線與底面所成角為30°,高為2,則過圓錐頂點的平面截圓錐所得截面面積的最大值為8.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.畫底面邊長為2cm、高為3cm的正四棱柱ABCD-A1B1C1D1的直觀圖.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知函數(shù)f(x)=2$\sqrt{3}$sin2(x+$\frac{π}{4}$)+2cos2x-$\sqrt{3}$,x∈[$\frac{π}{4}$,$\frac{π}{3}$].求
(1)函數(shù)f(x)的最大值、最小值.
(2)求函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知集合A={x|-x2+2x+3>0,x∈R},B={x|$\frac{x-1}{{x}^{2}+x+1}$<0,x∈R},求A∩B,∁UA∪B,A∩∁UB,∁U(A∩B).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.計算:C${\;}_{3}^{1}$+${C}_{4}^{2}$+${C}_{5}^{3}$+…+${C}_{99}^{97}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.函數(shù)f(x)=$\frac{1}{\sqrt{{log}_{0.4}(2x-1)}}$的定義域是($\frac{1}{2}$,1).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知函數(shù)f(x)=ax2+bx+c(a≠0)的圖象過點(-1,0).是否存在常數(shù)a,b,c,使不等式x≤f(x)≤$\frac{1+x^2}{2}$,對?x∈R都成立?若存在,求出a,b,c的值;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案