17.在矩形ABCD中,AB=2,BC=1,O為AB邊的中點,若在該矩形內(nèi)隨機取一點,則取到的點與O點的距離不大于1的概率為$\frac{π}{4}$.

分析 本題考查的知識點是幾何概型的意義,關鍵是要找出點到O的距離不大于1的點對應的圖形的面積,并將其和長方形面積一齊代入幾何概型計算公式進行求解.

解答 解:已知如圖所示:長方形面積為2,
以O為圓心,1為半徑作圓,
在矩形內(nèi)部的部分(半圓)面積為$\frac{π}{2}$,
因此取到的點到O的距離不大于1的概率P=$\frac{\frac{π}{2}}{2}$=$\frac{π}{4}$.
故答案為:$\frac{π}{4}$.

點評 本題主要考查幾何概型.如果每個事件發(fā)生的概率只與構成該事件區(qū)域的長度(面積或體積)成比例,則稱這樣的概率模型為幾何概率模型,簡稱為幾何概型.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

7.二項式(x-$\frac{1}{x}$)6的展開式中x-2的系數(shù)為( 。
A.6B.15C.20D.28

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知復數(shù)z滿足$\frac{z-i}{z}$=i,則z在復平面內(nèi)對應的點位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知Sn為等差數(shù)列{an}的前n項和,若a3=5,S9=81,則數(shù)列{an-a4}的前n項和為( 。
A.n2-5nB.n2-6nC.n2-7nD.n2-9n

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知函數(shù)f(x)=2cos2ωx+$\sqrt{3}$sin2ωx(ω>0)的最小正周期為π,給出下列四個命題:
(1)f(x)的最大值為3;
(2)將f(x)的圖象向左平移$\frac{π}{3}$后所得的函數(shù)是偶函數(shù);
(3)f(x)在區(qū)間[-$\frac{π}{3}$,$\frac{π}{6}$]上單調(diào)遞增;
(4)f(x)的圖象關于直線x=$\frac{π}{6}$對稱.
其中正確說法的序號是( 。
A.(2)(3)B.(1)(4)C.(1)(2)(4)D.(1)(3)(4)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知集合A={x|x2-x-2<0},B={x|x>log2m},若A⊆B,則實數(shù)m的取值范圍是(  )
A.(0,4]B.($\frac{1}{2}$,1]C.(0,$\frac{1}{2}$]D.(-∞,$\frac{1}{2}$]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.已知正項數(shù)列{an}的前n項和為Sn,當n≥2時,(an-Sn-12=SnSn-1,且a1=1,設bn=log2$\frac{{a}_{n+1}}{3}$,則b1+b2+…+bn=n2-n.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.($\sqrt{2x}$-$\frac{1}{x}$)9的二項式展開式中常數(shù)項的二項式系數(shù)為84(用符號或數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.函數(shù)f(x)=mx3-x在(-∞,+∞)上是減函數(shù),則m的取值范圍是( 。
A.(-∞,0)B.(-∞,1)C.(-∞,0]D.(-∞,1]

查看答案和解析>>

同步練習冊答案