分析 根據(jù)條件應(yīng)用余弦定理即可求出$cosC=-\frac{1}{2}$,從而根據(jù)向量數(shù)量積的計(jì)算公式便可求出$\overrightarrow{AC}•\overrightarrow{CB}$的值.
解答 解:如圖,
在△ABC中,由余弦定理得:
$cosC=\frac{C{A}^{2}+B{C}^{2}-A{B}^{2}}{2CA•BC}$=$\frac{25+9-49}{30}=-\frac{1}{2}$;
∴$\overrightarrow{AC}•\overrightarrow{CB}=|\overrightarrow{AC}||\overrightarrow{CB}|cos<\overrightarrow{AC},\overrightarrow{CB}>$
=$5×3×\frac{1}{2}$
=$\frac{15}{2}$.
故答案為:$\frac{15}{2}$.
點(diǎn)評 考查余弦定理,向量夾角的判斷及概念,以及向量數(shù)量積的計(jì)算公式.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{2}-1$ | B. | $\frac{{\sqrt{2}}}{2}$ | C. | $\frac{{3\sqrt{2}}}{2}$ | D. | $\sqrt{2}+1$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
想到“北上廣”創(chuàng)業(yè) | 不想到“北上廣”創(chuàng)業(yè) | 合計(jì) | |
男性 | 10 | ||
女性 | 20 | ||
合計(jì) | 100 |
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 橢圓 | B. | 雙曲線 | C. | 拋物線 | D. | 直線 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com