2.已知集合A={x|x2-x+1≥0},B={x|x2-5x+4≥0},則A∩B=(-∞,1]∪[4,+∞).

分析 分別求出集合A、B,取交集即可.

解答 解:∵A={x|x2-x+1≥0}=R,
B={x|x2-5x+4≥0}={x|x≥4或x≤1},
則A∩B=(-∞,1]∪[4,+∞),
故答案為:(-∞,1]∪[4,+∞).

點評 本題考查了集合的運算,考查二次函數(shù)的性質(zhì),是一道基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

12.已知-$\frac{π}{2}$<θ<$\frac{π}{2}$,且sinθ+cosθ=$\frac{1}{5}$,則tanθ的值為-$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.化簡:$\frac{sin(π-α)}{tan(π+α)}•\frac{tan(2π-α)}{cos(π-α)}•\frac{cos(2π-α)}{sin(π+α)}$=-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.已知$\overrightarrow a$=(5,3),$\overrightarrow b$=(-2,t),若$\overrightarrow a$與$\overrightarrow b$的夾角為鈍角,則實數(shù)t的取值范圍是(-∞,-$\frac{6}{5}$)∪($-\frac{6}{5}$,$\frac{10}{3}$).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.在平面直角坐標系xOy中,已知直線l:ax+y+3=0,點A(0,1),若直線l上存在點M,滿足|MA|=2,則實數(shù)a的取值范圍是a≤-$\sqrt{3}$或a≥$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.在△ABC中,若sinA:sinB:sinC=3:5:7,則△ABC的形狀是( 。
A.銳角三角形B.直角三角形C.鈍角三角形D.無法確定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.在△ABC中,BC=3,CA=5,AB=7,則$\overrightarrow{AC}$•$\overrightarrow{CB}$的值為$\frac{15}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.現(xiàn)有紅、黃、藍、綠四種不同顏色的燈泡各一個,從中選取三個分別安裝在△ABC的三個頂點處,則A處安裝紅燈的概率為$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.如圖所示,AB為圓O的直徑,D為圓O上一點,BC與圓O相切于B點,AD∥OC
(1)求證:CD為圓O的切線;(2)若圓O的半徑為R,求AD•OC的值.

查看答案和解析>>

同步練習冊答案