4.若{an}為等比數(shù)列,且a1a100=64,則log2a1+log2a2+…+log2a100=( 。
A.200B.300C.400D.500

分析 依題意,利用a1a100=64可得log2a1a100=log264=6,再利用對數(shù)的運(yùn)算性質(zhì)得到log2a1+log2a100=log2a1a100=26即可求得log2a1+log2a2+…+log2a100的值.

解答 解:∵a1a100=64,
∴l(xiāng)og2a1a100=log264=6,
即log2a1+log2a100=log2a2+log2a99=…=log2a50+log2a51=6,
∴l(xiāng)og2a1+log2a2+…+log2a100
=(log2a1+log2a100)+(log2a2+log2a99)+…+(log2a50+log2a51)=6×50=300.
故選:B.

點(diǎn)評 本題考查數(shù)列的求和,突出考查等比數(shù)列的性質(zhì)及對數(shù)的運(yùn)算性質(zhì),求得log2a1+log2a100=log2a2+log2a99=…=log2a50+log2a51=6是關(guān)鍵,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.設(shè)奇函數(shù)f(x)在區(qū)間[3,5]上是增函數(shù),且f(3)=4,則f(x)在區(qū)間[-5,-3]的最大值為-4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知AB是圓C:(x-1)2+y2=1的直徑,點(diǎn)P為直線x-y+1=0上任意一點(diǎn),則$\overrightarrow{PA}•\overrightarrow{PB}$的最小值是(  )
A.$\sqrt{2}$-1B.$\sqrt{2}$C.0D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.若實(shí)數(shù)a,b分別滿足a3-3a2+5a-1=0,b3-3b2+5b-5=0,則a+b=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=x2+ax+blnx(a,b∈R).
(1)若b=1且f(x)在x=1處取得極值,求實(shí)數(shù)a的值及單調(diào)區(qū)間;
(2)若b=-1,f(x)≥0對x>0恒成立,求a的取值范圍;
(3)若a+b≥-2且f(x)在(0,+∞)上存在零點(diǎn),求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{2}}{2}$,且過點(diǎn)P($\sqrt{2}$,1).
(1)求橢圓C的方程;
(2)若A1,A2分別是橢圓的左、右頂點(diǎn),動點(diǎn)M滿足MA2⊥A1A2,且MA1交橢圓C于不同于A1的點(diǎn)R,求證:$\overrightarrow{OR}$•$\overrightarrow{OM}$為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.有一個拋物線形的拱形橋洞,橋洞離水面的最大高度為 4m,跨度為 10m,把它的圖形放在如圖所示直角坐標(biāo)系中.
(1)求這條拋物線所對應(yīng)的函數(shù)關(guān)系式.
(2)如圖,在對稱軸右邊 1m 處,橋洞離水面的高是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.下列命題中,正確的是( 。
A.若a>b,c>d,則ac>bdB.若 ac<bc,則a<b
C.若a>b,c>d,則a-c>b-dD.若ac2<bc2,則a<b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=x3-x,如果過點(diǎn)(2,m)可作曲線y=f(x)的三條切線,求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案