17.已知平行于x軸的直線分別交曲線y=e2x+1與y=$\sqrt{2x-1}$于A,B兩點,則|AB|的最小值為( 。
A.$\frac{5+ln2}{4}$B.$\frac{5-ln2}{4}$C.$\frac{3+ln2}{4}$D.$\frac{3-ln2}{4}$

分析 設(shè)A(x1,a),B(x2,a),用a表示出x1,x2,求出|AB|,令y=x2-lnx,利用導(dǎo)數(shù)求出單調(diào)區(qū)間和極小值、最小值,即可求出|AB|的最小值.

解答 解:設(shè)A(x1,a),B(x2,a),
則a=e2x1+1=$\sqrt{2{x}_{2}-1}$,
x1=$\frac{1}{2}$(lna-1),x2=$\frac{1}{2}$(a2+1),
可得|AB|=|x2-x1|=$\frac{1}{2}$|a2-lna+2|,
令y=x2-lnx,則y′=2x-$\frac{1}{x}$=$\frac{2(x-\frac{\sqrt{2}}{2})(x+\frac{\sqrt{2}}{2})}{x}$,
函數(shù)在(0,$\frac{\sqrt{2}}{2}$)上單調(diào)遞減,在($\frac{\sqrt{2}}{2}$,+∞)上單調(diào)遞增,
可得x=$\frac{\sqrt{2}}{2}$時,函數(shù)y的最小值為$\frac{1}{2}$(1+ln2),
即有|AB|的最小值為$\frac{5+ln2}{4}$.
故選:A.

點評 本題考查導(dǎo)數(shù)知識的運用:求單調(diào)區(qū)間和極值、最值,考查化簡整理的運算能力,正確求導(dǎo)確定函數(shù)的最小值是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.i是虛數(shù)單位,已知$\frac{ai+1}{i}$=bi+1,則a+b為(  )
A.-2B.0C.2D.1-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.下列說法正確的是( 。
A.“x2+x-2>0”是“x>l”的充分不必要條件
B.“若am2<bm2,則a<b的逆否命題為真命題
C.命題“?x∈R,使得2x2-1<0”的否定是:“?x∈R,均有2x2-1<0”
D.命題“若x=$\frac{π}{4}$,則tanx=1的逆命題為真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.定義在R上的奇函數(shù)f(x)滿足f(x+1)=f(x-1),且x∈(-1,0)時,f(x)=3x,則f(log${\;}_{\frac{1}{3}}$8)的值為( 。
A.8B.-8C.$\frac{8}{9}$D.-$\frac{8}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在△ABC中,角A、B、C所對的邊依次為a、b、c,bc=lg4+2lg5+3,且sin$\frac{A}{2}$=$\frac{\sqrt{5}}{5}$.
(1)求△ABC的面積;
(2)求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.圓x2+y2-2x-2y+1=0的圓心到直線x-y-2=0的距離為(  )
A.$\sqrt{2}$B.2$\sqrt{2}$C.3$\sqrt{2}$D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.求值:$\frac{(\sqrt{3}tan12°-3)csc12°}{4co{s}^{2}12°-2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.若數(shù)列{an}的通項公式是an=(-1)•(3n-2),求數(shù)列{an}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.如圖,網(wǎng)格紙上小正方形的邊長為1,粗線畫出的是某幾何體的三視圖,則這個幾何體是(  )
A.三棱錐B.三棱柱C.四棱錐D.四棱柱

查看答案和解析>>

同步練習(xí)冊答案