分析 由題意可得sinxcosx=-$\frac{4}{9}$,且sinx>0,cosx<0,再根據(jù)sinx-cosx=$\sqrt{{(sinx-cosx)}^{2}}$,計(jì)算求得結(jié)果.
解答 解:若$sinx+cosx=\frac{1}{3}$,x∈(0,π),∴平方可得1+2sinxcosx=$\frac{1}{9}$,
∴sinxcosx=-$\frac{4}{9}$,∵sinx>0,cosx<0,
則sinx-cosx=$\sqrt{{(sinx-cosx)}^{2}}$=$\sqrt{1-2sinxcosx}$=$\frac{\sqrt{17}}{3}$,
故答案為:$\frac{\sqrt{17}}{3}$.
點(diǎn)評 本題主要考查同角三角函數(shù)的基本關(guān)系的應(yīng)用,以及三角函數(shù)在各個象限中的符號,屬于基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{14}{\;}$ | B. | $\frac{1}{2}$ | C. | -$\frac{1}{2}$ | D. | $\frac{1}{2}$或-$\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $(-∞,\frac{1}{2})$ | B. | (-∞,0) | C. | $(0,\frac{1}{2})$ | D. | $(\frac{1}{2},+∞)$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | -$\frac{1}{3}$ | C. | $\frac{7}{9}$ | D. | -$\frac{7}{9}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com