20.已知tanα=2,則$\frac{sin2α-cos2α}{si{n}^{2}α+2co{s}^{2}α}$的值為( 。
A.$\frac{7}{4}$B.$\frac{7}{6}$C.-$\frac{1}{6}$D.$\frac{5}{6}$

分析 利用二倍角公式,結(jié)合差角的正切公式,可得結(jié)論.

解答 解:∵tanα=2,
∴$\frac{sin2α-cos2α}{si{n}^{2}α+2co{s}^{2}α}$=$\frac{2sinαcosα-(co{s}^{2}α-si{n}^{2}α)}{si{n}^{2}α+2co{s}^{2}α}$
=$\frac{2tanα-1+ta{n}^{2}α}{ta{n}^{2}α+2}$=$\frac{2×2-1+4}{4+2}$=$\frac{7}{6}$.
故選:B.

點(diǎn)評(píng) 本題考查二倍角公式,考查差角的正切公式,考查學(xué)生的計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.直線y=-x+3的傾斜角是( 。
A.$\frac{3π}{4}$B.$-\frac{π}{4}$C.$\frac{π}{4}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知{an}為等差數(shù)列,且a1+a3+a5=105,a2+a4+a6=99,當(dāng)a2+a4+a6+…+a2n取最大值時(shí),則n的值為( 。
A.9B.19C.10D.20

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.在(x-$\frac{m}{x}$)4的展開(kāi)式中,x2的系數(shù)為8,則實(shí)數(shù)m的值是( 。
A.-2B.-4C.2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.在△ABC中,已知a=$\sqrt{2}$,b=2,A=45°,則B=( 。
A.90°B.30°C.45°D.45°或135°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.某客運(yùn)部門(mén)規(guī)定甲、乙兩地之間旅客托運(yùn)行李的費(fèi)用為:不超過(guò)25kg按0.5元/kg收費(fèi),超過(guò)25kg的部分按0.8元/kg收費(fèi),計(jì)算收費(fèi)的程序框圖如圖所示,則①②處應(yīng)填(  )
A.y=0.8x    y=0.5xB.y=0.5x    y=0.8x
C.y=25×0.5+(x-25)×0.8    y=0.5xD.y=25×0.5+0.8x    y=0.8x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知函數(shù)f(x)=2cos(π-$\frac{x}{2}$)•tan(π-$\frac{x}{2}$)•cos$\frac{x}{2}$,-$\frac{π}{2}$≤x≤$\frac{π}{2}$.
(1)求f($\frac{π}{2}$)的值;
(2)判斷函數(shù)是否是偶函數(shù)(請(qǐng)直接給出結(jié)論);
(3)求f(2x)在區(qū)間[-$\frac{π}{6}$,$\frac{π}{2}$]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一個(gè)焦點(diǎn)為F(2,0),且雙曲線的漸近線與圓(x-2)2+y2=3相切,則雙曲線的方程為${x}^{2}-\frac{{y}^{2}}{3}=1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.畫(huà)出函數(shù)f(x)=x2-|4x-4|的圖象,并求出當(dāng)x∈[-3,$\frac{5}{2}$]時(shí)函數(shù)f(x)的值域.

查看答案和解析>>

同步練習(xí)冊(cè)答案