分析 (Ⅰ)根據(jù)線面垂直的判定,先證明BD⊥平面PAC,利用線面垂直的性質(zhì)即可證明BD⊥PM.
(Ⅱ)過O作OH⊥PM交PM于H,連HD,則∠OHD為A-PM-D的平面角,利用二面角O-PM-D的正切值為2$\sqrt{6}$,即可求出$\frac{PA}{AD}$的值.
解答 (Ⅰ)證明:∵四棱錐P-ABCD中,PA⊥平面ABCD,
又BD?平面ABCD,∴BD⊥PA,
∵底面ABCD是菱形,
∴BD⊥AC,
又PA∩AC=A,∴BD⊥平面PAC,
又PM?平面PAC,
∴BD⊥PM.
(Ⅱ)解:過O作OH⊥PM交PM于H,連HD,
因為DO⊥平面PAC,由三垂線定理可得DH⊥PM,
所以∠OHD為A-PM-D的平面角,
設(shè)PA=b,AD=4,
∵底面ABCD是邊長為4的菱形,∠BAD=120°,
∴OD=2$\sqrt{3}$,OM=1,AM=3,且$\frac{OH}{OM}$=$\frac{AP}{PM}$,
從而OH=$\frac{OM•AP}{PM}$=$\frac{1•b}{\sqrt{^{2}+\frac{9}{4}}}$=$\frac{2b}{\sqrt{4^{2}+9}}$,
∴tan∠OHD=$\frac{OD}{OH}$=$\frac{\sqrt{3(16^{2}+36)}}{2b}$,
所以16b2=144,解得b=3.(舍負(fù)值)
∴PA的長為3.
則$\frac{PA}{AD}$=$\frac{3}{4}$.
點評 本題考查線面垂直、面面垂直的判定,考查面面角,解題的關(guān)鍵是掌握線面垂直、面面垂直的判定,作出面面角.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1 | B. | -$\frac{1}{2}$ | C. | $\frac{1}{2}$ | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2$\sqrt{2}$ | B. | $\sqrt{10}$ | C. | $\sqrt{11}$ | D. | 2$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1-i | B. | 1+i | C. | -1+i | D. | -1-i |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com