2.已知向量$\overrightarrow{OA}$=(cosβ,sinβ),將向量$\overrightarrow{OA}$繞坐標(biāo)原點O逆時針旋轉(zhuǎn)θ角得到向量$\overrightarrow{OB}$(0<θ<90°),則下列說法不正確的是( 。
A.|$\overrightarrow{OA}$|+|$\overrightarrow{OB}$|>|$\overrightarrow{OA}$-$\overrightarrow{OB}$|B.|$\overrightarrow{AB}$|<$\sqrt{2}$C.|$\overrightarrow{OA}$+$\overrightarrow{OB}$|=|$\overrightarrow{OA}$-$\overrightarrow{OB}$|D.($\overrightarrow{OA}$+$\overrightarrow{OB}$)⊥($\overrightarrow{OA}$-$\overrightarrow{OB}$)

分析 以O(shè)A,OB為鄰邊作平行四邊形OACB,利用平面向量線性運算的幾何意義和三角形,菱形知識進(jìn)行判斷.

解答 解:以O(shè)A,OB為鄰邊作平行四邊形OACB則AB=|$\overrightarrow{OA}-\overrightarrow{OB}$|,
∵OA+OB>AB,∴|$\overrightarrow{OA}$|+|$\overrightarrow{OB}$|>|$\overrightarrow{OA}$-$\overrightarrow{OB}$|,故A正確.
∵OA=OB=1,∠AOB<90°,
∴AB=$\sqrt{O{A}^{2}+O{B}^{2}-2OA•OB•cos∠AOB}$=$\sqrt{2-2cos∠AOB}$$<\sqrt{2}$,故B正確.
∵|$\overrightarrow{OA}$+$\overrightarrow{OB}$|2=${\overrightarrow{OA}}^{2}$+${\overrightarrow{OB}}^{2}$+2$\overrightarrow{OA}•\overrightarrow{OB}$,|$\overrightarrow{OA}$-$\overrightarrow{OB}$|2=${\overrightarrow{OA}}^{2}$+${\overrightarrow{OB}}^{2}$-2$\overrightarrow{OA}•\overrightarrow{OB}$,
$\overrightarrow{OA}•\overrightarrow{OB}≠0$,
∴|$\overrightarrow{OA}$+$\overrightarrow{OB}$|≠|(zhì)$\overrightarrow{OA}$-$\overrightarrow{OB}$|.故C錯誤.
∵OA=OB,∴四邊形ABCD是菱形,
∴OC⊥AB,即($\overrightarrow{OA}$+$\overrightarrow{OB}$)⊥($\overrightarrow{OA}$-$\overrightarrow{OB}$),故D正確.
故選:C.

點評 本題考查了平面向量線性運算的幾何意義,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.不等式組$\left\{\begin{array}{l}{4x-y≥0}\\{3x-2y-6≤0}\\{2x+y-5≤0}\end{array}\right.$所表示的平面區(qū)域為Ω,則Ω上的點到點M(2,-6)的最短距離為(  )
A.1B.2C.$\frac{12\sqrt{13}}{13}$D.$\frac{28\sqrt{13}}{13}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若f(x)=1-2x,則不等式|f(x+1)+4|≤3的解集為[0,3].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)全集U={0,1,2},A={x|x2+ax+b=0},若∁UA={0,1},則實數(shù)a的值為( 。
A.2B.-2C.4D.-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.在△ABC中,AB=3,AC=4,M是邊BC的中點,則$\overrightarrow{AM}•\overrightarrow{BC}$=$\frac{7}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知向量$\overrightarrow a$=($\frac{1}{2}$,$\frac{{\sqrt{3}}}{2}$),$\overrightarrow b$=(-$\sqrt{3}$,1),$\overrightarrow c$=$\overrightarrow a$+λ$\overrightarrow b$,則$\overrightarrow c$•$\overrightarrow a$等于( 。
A.λB.C.1D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知命題p:?x∈R,sin2x≤1,則( 。
A.¬p:?x0∈R,sin2x0≥1B.¬p:?x∈R,sin2x≥1
C.¬p:?x0∈R,sin2x0>1D.¬p:?x∈R,sin2x>1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,且滿足$\frac{sinA}{sinB}$=-$\frac{sinC}{tanC}$.
(1)求$\frac{3{a}^{2}+^{2}}{{c}^{2}}$的值;
(2)若c=4,且△ABC的面積為$\sqrt{3}$,求邊a,b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.設(shè)集合M={x|$\frac{1+x}{3-x}$≥0},N={x|2x≥1},則M∩N=[0,3).

查看答案和解析>>

同步練習(xí)冊答案