14.已知等差數(shù)列{an}的前n項和為Sn,若a5=14-a6,則S10=(  )
A.35B.70C.28D.14

分析 由等差數(shù)列{an}的性質(zhì),及a5=14-a6,可得a1+a10=a5+a6=14.再利用求和公式即可得出.

解答 解:由等差數(shù)列{an}的性質(zhì),及a5=14-a6
∴a1+a10=a5+a6=14.
則S10=$\frac{10({a}_{1}+{a}_{10})}{2}$=$\frac{10×14}{2}$=70.
故選:B.

點(diǎn)評 本題考查了等差數(shù)列的通項公式性質(zhì)及其求和公式,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知一個三角形的三邊邊長分別是3,4,5,設(shè)計一個算法,求出它的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知命題p:實(shí)數(shù)m使函數(shù)f(x)=$\frac{1}{3}$x3-(m-1)x2-4mx+1在[1,3]上不單調(diào),命題q:實(shí)數(shù)m滿足方程$\frac{{x}^{2}}{m-1}$+$\frac{{y}^{2}}{2-m}$=1表示橢圓.
(1)若p∧q為真,求m的取值范圍;
(2)若p∨q為真,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.△ABC中,三邊a、b、c成等比數(shù)列.求證:acos2$\frac{C}{2}$+ccos2$\frac{A}{2}$≥$\frac{3}{2}$b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.給出以下四個類比:
①已知a,b為實(shí)數(shù),若a2=b2,則a=±b可以類比為:已知z1,z2為虛數(shù),若$z_1^2=z_2^2$,則z1=±z2;
②已知a,b為實(shí)數(shù),若a-b>0,則a>b可以類比為:已知z1,z2為虛數(shù),若z1-z2>0,則z1>z2;
③已知a,b為實(shí)數(shù),若|a|=|b|,則a=±b可以類比為:已知z1,z2為虛數(shù),若|z1|=|z2|,則z1=±z2
其中類比結(jié)論正確的個數(shù)為( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知復(fù)數(shù)z=(2m2-3m-2)+(3m2-4m-4)i其中m∈R.當(dāng)m為何值時,z為:
(1)實(shí)數(shù);     
(2)虛數(shù);    
(3)純虛數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.某校高一年級有四個班,其中一、二班為數(shù)學(xué)課改班,三、四班為數(shù)學(xué)非課改班.在期末考試中,課改班與非課改班的數(shù)學(xué)成績優(yōu)秀與非優(yōu)秀人數(shù)統(tǒng)計如下表.
優(yōu)秀非優(yōu)秀總計
課改班a50b
非課改班20c110
合計de210
(Ⅰ)求d的值為多少?若采用分層抽樣的方法從課改班的學(xué)生中隨機(jī)抽取4人,則數(shù)學(xué)成績優(yōu)秀和數(shù)學(xué)成績非優(yōu)秀抽取的人數(shù)分別是多少?
(Ⅱ)在(Ⅰ)的條件下抽取的4人中,再從中隨機(jī)抽取2人,求兩人數(shù)學(xué)成績都優(yōu)秀的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.函數(shù)f(x)=x+ax2+blnx的圖象在點(diǎn)P(1,0)處的切線斜率為2.
(1)求a,b的值;
(2)證明:f(x)≤2x-2對任意正實(shí)數(shù)x恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知等比數(shù)列{an}的前n項和為Sn,Sn=a($\frac{1}{4}$)n-1+6且,則a=-$\frac{3}{2}$.

查看答案和解析>>

同步練習(xí)冊答案