分析 (1)由$\frac{1}{{a}_{1}}$+$\frac{2}{{a}_{2}}$+…+$\frac{{2}^{n-1}}{{a}_{n}}$=$\frac{{2}^{n}λ}{{a}_{n}}$-1,①,可得 $\frac{1}{{a}_{1}}$+$\frac{2}{{a}_{2}}$+…+$\frac{{2}^{n-1}}{{a}_{n}}$+$\frac{{2}^{n}}{{a}_{n+1}}$=$\frac{{2}^{n+1}λ}{{a}_{n+1}}-1$,②,兩式相減整理可得$\frac{{a}_{n+1}}{{a}_{n}}$=$\frac{2λ-1}{λ}$,數(shù)列{an}是以2λ-1為首項(xiàng),以$\frac{2λ-1}{λ}$為公比的等比數(shù)列,問題得以解決,
(2)求出數(shù)列bn的通項(xiàng)公式,使bn-bn-1>0,即可得到bn最大時(shí)n的值.
解答 解:(1)由$\frac{1}{{a}_{1}}$+$\frac{2}{{a}_{2}}$+…+$\frac{{2}^{n-1}}{{a}_{n}}$=$\frac{{2}^{n}λ}{{a}_{n}}$-1,①,可得 $\frac{1}{{a}_{1}}$+$\frac{2}{{a}_{2}}$+…+$\frac{{2}^{n-1}}{{a}_{n}}$+$\frac{{2}^{n}}{{a}_{n+1}}$=$\frac{{2}^{n+1}λ}{{a}_{n+1}}-1$,②,
由②-①得$\frac{{2}^{n}}{{a}_{n+1}}$=$\frac{{2}^{n+1}•λ}{{a}_{n+1}}$-$\frac{{2}^{n}λ}{{a}_{n}}$,
即$\frac{1}{{a}_{n+1}}$=$\frac{2λ}{{a}_{n+1}}$-$\frac{λ}{{a}_{n}}$,
∴$\frac{{a}_{n+1}}{{a}_{n}}$=$\frac{2λ-1}{λ}$,
當(dāng)n=1時(shí),$\frac{1}{{a}_{1}}$=$\frac{2λ}{{a}_{1}}$-1,
∴a1=2λ-1,
∴數(shù)列{an}是以2λ-1為首項(xiàng),以$\frac{2λ-1}{λ}$為公比的等比數(shù)列,
∴an=(2λ-1)•($\frac{2λ-1}{λ}$)n-1=$\frac{(2λ-1)^{n}}{{λ}^{n-1}}$
(2)λ=$\frac{2}{3}$,bn=(2n-4001)an=(2n-4001)•$\frac{1}{3}$•($\frac{1}{2}$)n-1,
則bn-1=(2n-4003)•$\frac{1}{3}$•($\frac{1}{2}$)n-2,
∴bn-bn-1=$\frac{1}{3}$•($\frac{1}{2}$)n-1(4005-2n)>0,
即n<$\frac{4005}{2}$<2003,
∴當(dāng)n=2002時(shí),bn最大.
點(diǎn)評(píng) 本題考查了數(shù)列的遞推公式和數(shù)列的通項(xiàng)公式的求法以及數(shù)列的函數(shù)特征,屬于難題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1 | B. | 31 | C. | -33 | D. | -31 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
x | 1 | 2 | 3 |
y | 6 | 4 | 5 |
A. | $\frac{1}{10}$ | B. | $\frac{1}{2}$ | C. | $-\frac{1}{10}$ | D. | -$\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 12 | B. | 4 | C. | 6 | D. | 9 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com