16.下列函數(shù)中,既是偶函數(shù)又在區(qū)間(0,+∞)上單調(diào)遞減的是( 。
A.y=x3B.y=ln|x|C.y=sin($\frac{π}{2}$-x)D.y=-x2-1

分析 根據(jù)基本初等函數(shù)的圖象與性質(zhì),對(duì)選項(xiàng)中的函數(shù)進(jìn)行判斷分析即可.

解答 解:對(duì)于A,函數(shù)y=x3是定義域R上的奇函數(shù),不滿足題意;
對(duì)于B,函數(shù)y=ln|x|是定義域{x|x≠0}上的偶函數(shù),但在區(qū)間(0,+∞)上是單調(diào)增函數(shù),不滿足題意;
對(duì)于C,函數(shù)y=sin($\frac{π}{2}$-x)=cosx是定義域R上的偶函數(shù),但在區(qū)間(0,+∞)上不是單調(diào)增函數(shù),不滿足題意;
對(duì)于D,函數(shù)y=-x2-1是定義域R上的偶函數(shù),且在區(qū)間(0,+∞)上是單調(diào)減函數(shù),滿足題意.
故選:D.

點(diǎn)評(píng) 本題考查了基本初等函數(shù)的圖象與性質(zhì)的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知數(shù)列{an}是公比為2的等比數(shù)列,且a2=-1,則a6=-16.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知命題:若數(shù)列{an}為等差數(shù)列,且am=k,an=l(m≠n,m,n∈N+),則am+n=$\frac{ln-km}{n-m}$,現(xiàn)已知等比數(shù)列{bn}(bn>0,n∈N+),bm=a,bn=b(m≠n,m,n∈N+)若類比上述結(jié)論,則可得到bm+n( 。
A.$\root{n-m}{\frac{^{n}}{{a}^{m}}}$B.$\frac{^{n}-{a}^{m}}{n-m}$C.$\root{n-m}{^{n}-{a}^{m}}$D.$\frac{\frac{^{n}}{{a}^{m}}}{n-m}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.函數(shù) y=$\frac{2}{2sinx-1}$的值域是( 。
A.(-∞,-$\frac{2}{3}$]∪[2,+∞)B.[-$\frac{2}{3}$,2]C.[-$\frac{2}{3}$,0)∪(0,2]D.(-∞,0)∪(0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=x2+$\frac{2{a}^{3}}{x}$+1.
(Ⅰ)若曲線y=f(x)在點(diǎn)(1,f(1))處的切線與直線y=1平行,求a的值;
(Ⅱ)若0<a<2,求函數(shù)f(x)在區(qū)間[1,2]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,E是圓內(nèi)兩弦AB和CD的交點(diǎn),F(xiàn)為AD延長(zhǎng)線上一點(diǎn),F(xiàn)G切圓于G,且FE=FG.
(I)證明:FE∥BC;
(Ⅱ)若AB⊥CD,∠DEF=30°,求$\frac{AF}{FG}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.平面外ABC的一點(diǎn)P,AP、AB、AC兩兩互相垂直,過AC的中點(diǎn)D做ED⊥面ABC,且ED=1,PA=2,AC=2,連接BP,BE,多面體B-PADE的體積是$\frac{\sqrt{3}}{3}$;
(1)畫出面PBE與面ABC的交線,說明理由;
(2)求面PBE與面ABC所成的銳二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知命題p:?x∈R,使得x2-x+2<0;命題q:?x∈[1,2],使得x2≥1.以下命題為真命題的是( 。
A.¬p∧¬qB.p∨¬qC.¬p∧qD.p∧q

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.計(jì)算sin5°cos55°+cos5°sin55°的結(jié)果是(  )
A.$-\frac{1}{2}$B.$\frac{1}{2}$C.$-\frac{{\sqrt{3}}}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案