20.已知橢圓C的中心在原點(diǎn),焦點(diǎn)在x軸上,離心率為e=$\frac{\sqrt{6}}{3}$,右焦點(diǎn)到右頂點(diǎn)的距離為$\sqrt{3}$-$\sqrt{2}$
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)設(shè)F1,F(xiàn)2為橢圓的左,右焦點(diǎn),過F2作直線交橢圓C于P,Q兩點(diǎn),求△PQF1的內(nèi)切圓半徑r的最大值.

分析 (1)由題意設(shè)橢圓方程,由e=$\frac{c}{a}$=$\frac{\sqrt{6}}{3}$,a-c=$\sqrt{3}$-$\sqrt{2}$,即可求得a和c的值,由b2=a2-c2=1,即可求得b的值,求得橢圓方程;
(2)由當(dāng)直線PQ斜率存在時(shí),設(shè)直線方程為:x=ky+$\sqrt{2}$,代入橢圓方程,由韋達(dá)定理可知y1+y2,y1•y2,根據(jù)三角形的面積公式可知S=$\frac{1}{2}$丨F1+F2丨•丨y1-y2丨=$\frac{1}{2}$(丨PF1丨+丨F1Q丨+丨PQ丨)•r,求得r的表達(dá)式,根據(jù)基本不等式的關(guān)系,即可求得△PQF1的內(nèi)切圓半徑r的最大值.

解答 解:(1)由題意可知:設(shè)橢圓方程為:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1$,(a>b>0),
則e=$\frac{c}{a}$=$\frac{\sqrt{6}}{3}$,a-c=$\sqrt{3}$-$\sqrt{2}$,
解得:a=$\sqrt{3}$,c=$\sqrt{2}$,
由b2=a2-c2=1,
∴橢圓的方程為:$\frac{{x}^{2}}{3}+{y}^{2}=1$;
(2)由(1)可知:F1(-$\sqrt{2}$,0),F(xiàn)2($\sqrt{2}$,1),設(shè)P(x1,y1),Q(x2,y2),
當(dāng)PQ斜率不存在時(shí),可得:r=$\frac{\sqrt{2}}{3}$,
當(dāng)PQ斜率存在時(shí),設(shè)直線方程為:x=ky+$\sqrt{2}$,
將直線方程代入橢圓方程,整理得:(k2+3)y2+2$\sqrt{2}$ky-0=0,
由韋達(dá)定理可知:y1+y2=-$\frac{2\sqrt{2}k}{{k}^{2}+3}$,y1•y2=-$\frac{1}{{k}^{2}+3}$,
△PQF1面積S=$\frac{1}{2}$丨F1+F2丨•丨y1-y2丨=$\sqrt{2}$$\sqrt{({y}_{1}+{y}_{2})^{2}-4{y}_{1}{y}_{2}}$=$\frac{2\sqrt{6}\sqrt{{k}^{2}+1}}{{k}^{2}+3}$,
由S=$\frac{1}{2}$(丨PF1丨+丨F1Q丨+丨PQ丨)•r=2a•r=2$\sqrt{3}$r,
∴$\frac{2\sqrt{6}\sqrt{{k}^{2}+1}}{{k}^{2}+3}$=2$\sqrt{3}$r,
∴r=$\frac{\sqrt{2}\sqrt{{k}^{2}+1}}{{k}^{2}+3}$=$\frac{\sqrt{2}}{\sqrt{{k}^{2}+1}+\frac{2}{\sqrt{{k}^{2}+1}}}$≤$\frac{1}{2}$,
當(dāng)且僅當(dāng)$\sqrt{{k}^{2}+1}$=$\frac{2}{\sqrt{{k}^{2}+1}}$時(shí),即k=±1時(shí),等號成立,
∴內(nèi)切圓半徑的最大值為$\frac{1}{2}$.

點(diǎn)評 本題考查橢圓的標(biāo)準(zhǔn)方程,考查直線與橢圓的位置關(guān)系,考查三角形面積公式及基本不等式的關(guān)系的綜合應(yīng)用,考查計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}(x≤0)}\\{f(x-1)(x>0)}\end{array}\right.$,則f(x)=x的解的個(gè)數(shù)為(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.各項(xiàng)均為正數(shù)的數(shù)列{an}滿足an2=4Sn-2an-1(n∈N*),其中Sn為{an}的前n項(xiàng)和.
(1)求a1,a2的值;
(2)求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.若函數(shù)f(x)=a(x-2e)•lnx+1有兩個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是(-∞,0)∪($\frac{1}{e}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.在△ABC中,若a2+b2<c2,且sinC=$\frac{1}{2}$,則∠C=( 。
A.120°B.60°C.150°D.30°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.設(shè)D為△ABC所在平面內(nèi)一點(diǎn),$\overrightarrow{BC}$=3$\overrightarrow{CD}$,$\overrightarrow{AD}$=m$\overrightarrow{AB}$+n$\overrightarrow{AC}$,則n-m=$\frac{5}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.把y=sin2x的圖象按向量$\overrightarrow a$經(jīng)過一次平移后得到$y=sin(2x+\frac{π}{3})+2$的圖象,則$\overrightarrow a$為(  )
A.$(\frac{π}{6}\;,2)$B.$(-\frac{π}{6}\;,2)$C.$(-\frac{π}{6}\;,-2)$D.$(\frac{π}{6}\;,-2)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.函數(shù)$f(x)=\frac{1}{2}({e^x}-{e^{-x}})$就奇偶性而言是奇函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知2f(-x)+f(x)=x2-x(x≠0),求f(x)的解析式:

查看答案和解析>>

同步練習(xí)冊答案