y=sin(
π
2
x
)是奇函數(shù)
 
.(判斷對錯)
考點:正弦函數(shù)的圖象
專題:三角函數(shù)的圖像與性質(zhì)
分析:根據(jù)函數(shù)的定義域關(guān)于原點對稱,函數(shù)的奇偶性的定義,作出判斷.
解答: 解:由于y=sin(
π
2
x
)的定義域為R,定義域關(guān)于原點對稱,且sin[
π
2
(-x)]=-sin
π
2
x,故函數(shù)y=sin(
π
2
x
)為奇函數(shù),
故答案為:對.
點評:本題主要考查正弦函數(shù)的奇偶性,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(m,3),
b
(2,-1)
(1)若
a
b
的夾角為鈍角,求m的范圍
(2)若
a
b
的夾角為銳角,求m的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若對?x1∈(0,2],?x2∈[1,2],使4x1lnx1-x12+3+4x1x22+8ax1x2-16x1≥0成立,則a的取值范圍是( 。
A、[-
1
8
,+∞)
B、[
25-8ln2
16
,+∞)
C、[-
1
8
,
5
4
]
D、[-∞,
5
4
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是定義在[-1,1]上的奇函數(shù),對于任意x1,x2∈[-1,1],x1≠x2總有
f(x1)-f(x2)
x1-x2
>0且f(1)=1.若對于任意a∈[-1,1],存在x∈[-1,1],使f(x)≤t2-2at-1成立,則實數(shù)t的取值范圍是( 。
A、-2≤t≤2
B、t≤-1-
3
或t≥
3
+1
C、t≤0或t≥2
D、t≥2或t≤-2或t=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={1,m2+1},B={2,4},則“m=
3
”是“A∩B={4}”的(  )
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A、B、C所對邊長分別為a、b、c,若a=5,b=8,B=60°,則c=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=ex(mx2+x+1),且曲線y=f(x)在x=1處的切線與x軸平行.
(1)求m的值及f(x)的極值;
(2)證明:當α,β∈[0,
π
2
]時,f(cosα)-f(sinβ)≤e-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
|x+1|+|x-a|-2
(a∈R)

(1)若a=3,解不等式f(x)≥2;
(2)若f(x)的定義域為R,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=sinωx(0<ω<2)在區(qū)間[0,
π
3
]上單調(diào)遞增,在區(qū)間[
π
3
π
2
]上單調(diào)遞減,則ω等于
 

查看答案和解析>>

同步練習(xí)冊答案