A. | 1 | B. | 2 | C. | 3 | D. | 4 |
分析 求出f(x)=e或f(x)=-1,分別判斷方程$\frac{x}{{e}^{x}}$=e,方程ex=-x的解的個(gè)數(shù),從而求出方程[f(x)]2-(e-1)f(x)-e=0的實(shí)根個(gè)數(shù)即可.
解答 解:∵[f(x)]2-(e-1)f(x)-e=0,
∴[f(x)-e][f(x)+1]=0,
解得:f(x)=e或f(x)=-1,
f(x)=e時(shí),$\frac{x}{{e}^{x}}$=e無(wú)解,
f(x)=-1即ex=-x時(shí),
如圖示:
,
顯然方程ex=-x1個(gè)解,
即方程[f(x)]2-(e-1)f(x)-e=0的實(shí)根個(gè)數(shù)是1個(gè),
故選:A.
點(diǎn)評(píng) 本題考查了方程的根的個(gè)數(shù)問(wèn)題,考查函數(shù)的解得問(wèn)題,是一道中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-∞,-3)∪(0,3) | B. | (-3,0)∪(3,+∞) | C. | (-∞,-3)∪(-3,0) | D. | (0,3)∪(3,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{{-4-3\sqrt{3}}}{10}$ | B. | $\frac{{4-3\sqrt{3}}}{10}$ | C. | $\frac{{3\sqrt{3}-4}}{10}$ | D. | $\frac{{4+3\sqrt{3}}}{10}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $±2\sqrt{2}$ | B. | $2\sqrt{2}$ | C. | $±\sqrt{15}$ | D. | $4\sqrt{15}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -2 | B. | -6 | C. | 5 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | z=$\frac{1}{5}$x-y | B. | z=-3x+y | C. | z=$\frac{1}{5}$x+y | D. | z=3x-y |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com