A. | a2+b2+c2>ab+bc+ca | B. | a-b+$\frac{1}{a-b}$≥2 | ||
C. | |a-b|+|b-c|≥|a-c| | D. | $\sqrt{a+3}$-$\sqrt{a+1}$≤$\sqrt{a+2}$-$\sqrt{a}$ |
分析 A.a(chǎn),b,c是互不相等的正數(shù),可得(a-b)2+(b-c)2+(a-c)2>0,展開(kāi)化簡(jiǎn)即可判斷出結(jié)論;
B.a(chǎn)<b時(shí),(a-b)+$\frac{1}{a-b}$=-$[(b-a)+\frac{1}{b-a}]$≤-2,即可判斷出正誤;
C.由絕對(duì)值的不等式的性質(zhì)即可判斷出結(jié)論;
D.平方作差$(\sqrt{a+1}+\sqrt{a+2})^{2}$-$(\sqrt{a+3}+\sqrt{a})^{2}$=2$\sqrt{{a}^{2}+3a+2}$-2$\sqrt{{a}^{2}+3a}$>0,即可判斷出結(jié)論.
解答 解:A.∵a,b,c是互不相等的正數(shù),∴(a-b)2+(b-c)2+(a-c)2>0,展開(kāi)化為a2+b2+c2>ab+bc+ca,因此恒成立;
B.a(chǎn)<b時(shí),(a-b)+$\frac{1}{a-b}$=-$[(b-a)+\frac{1}{b-a}]$≤-2,因此不恒成立;
C.由絕對(duì)值的不等式的性質(zhì)可得:|a-b|+|b-c|≥|a-b+b-c|=|a-c|,因此恒成立;
D.∵$(\sqrt{a+1}+\sqrt{a+2})^{2}$-$(\sqrt{a+3}+\sqrt{a})^{2}$=2$\sqrt{{a}^{2}+3a+2}$-2$\sqrt{{a}^{2}+3a}$>0,∴$\sqrt{a+1}$+$\sqrt{a+2}$>$\sqrt{a+3}$+$\sqrt{a}$,因此$\sqrt{a+2}$-$\sqrt{a}$>$\sqrt{a+3}$-$\sqrt{a+1}$,因此恒成立.
綜上可得:只有B不恒成立.
故選:B.
點(diǎn)評(píng) 本題考查了基本不等式的性質(zhì)、不等式的解法,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
父親身高x | 60 | 62 | 64 | 65 | 66 | 67 | 68 | 70 | 72 | 74 |
兒子身高y | 63.6 | 65.2 | 66 | 65.5 | 66.9 | 67.1 | 67.4 | 68.3 | 70.1 | 70 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 5 | B. | 3+2$\sqrt{2}$ | C. | 3-2$\sqrt{2}$ | D. | 不存在 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -2 | B. | 4 | C. | 2 | D. | -4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com